
A Conformal Mapping-based Framework for Robot-to-Robot and
Sim-to-Real Transfer Learning

Shijie Gao and Nicola Bezzo

Abstract— This paper presents a novel method for transfer-
ring motion planning and control policies between a teacher
and a learner robot. With this work, we propose to reduce
the sim-to-real gap, transfer knowledge designed for a specific
system into a different robot, and compensate for system
aging and failures. To solve this problem we introduce a
Schwarz–Christoffel mapping-based method to geometrically
stretch and fit the control inputs from the teacher into the
learner command space. We also propose a method based on
primitive motion generation to create motion plans and control
inputs compatible with the learner’s capabilities. Our approach
is validated with simulations and experiments with different
robotic systems navigating occluding environments.

I. INTRODUCTION

Robotic applications are typically built considering spe-
cific systems in mind. For example, popular motion planning
methods (e.g., artificial potential field [1], A* [2], prob-
abilistic techniques [3]) and control methods (e.g., MPC,
PID [4]) require fine tuning and knowledge about system
model dynamics in order to be fully leveraged and obtain a
desired performance on a selected platform. We also note that
most technologies are developed through simulations which
offer a practical and inexpensive mean to create and test the
limits and performance of designed algorithms. Researchers
usually spend considerable time and resources to create
techniques for specific robotic systems and to adapt them on
new systems, as well as to compensate for the simulation-
reality gap during deployments on actual vehicles. Finally,
even when a new technique is developed and deployed on a
specific robot, it can still need to be adjusted or adapted over
time due to mechanical aging, disturbances, and even failures
that deprecate and modify the system’s original model. In
this paper we seek a general framework to transfer and adapt
system’s performance. As mentioned above the goal of the
proposed work is to:

• Reduce the sim-to-real gap allowing a developer to
quickly transfer motion planning and control methods
onto a real platform.

• Transfer knowledge designed for a specific robot onto
a different robot.

• Compensate for system deterioration/failures by learn-
ing quickly the limits and the proper input mapping to
continue an operation.

All of the aforementioned problems can be simplified and
cast as a teacher transferring knowledge to a learner.

Specifically, to address these problems, in this work
we propose a novel method that leverages a variant of

Shijie Gao, and Nicola Bezzo are with the Charles L. Brown De-
partment of Electrical and Computer Engineering, and Link Lab, Uni-
versity of Virginia, Charlottesville, VA 22904, USA. Email:{sg9dn,
nb6be}@virginia.edu

Fig. 1. Pictorial representation of the proposed work in which motion
planning and control policies are transferred from a teacher simulated
vehicle to two vehicles to create the same behavior designed in simulation.

Schwarz–Christoffel mapping (SCM) [5] – a conformal
transformation of a simple poly area onto the interior of
a rectangle – to transfer a teacher vehicle’s control input
sequence to a learner vehicle, as depicted in Fig. 1. Our
proposed method allows the teacher to understand the learner
limitations, so that the transferred control input is compatible
with the learner capabilities. Finally, once these limitations
are extracted, we propose a mechanism to adapt also the
teacher motion planning scheme to create paths compatible
with the learner constraints. To deal with this problem,
our scheme leverages an optimized finite horizon primitive
motion generation.

The main contributions of this work are twofold: 1) a
light-weight transfer framework that leverages SCM theory
to directly transfers the control input from teacher to learner
so that the learner can leverage the teacher’s control policy
while its own dynamics remain unknown; and 2) a method
for adapting the source system’s control and path planning
policy to the learner. The method constrains the output of the
source system’s controller and of the path planner so that the
transferred motion plan and control input is guaranteed to be
compatible with the target system’s dynamics.

The rest of the paper is organized as follows: in Section II
we summarize the state-of-the-art approaches for solving
sim-to-real problems in the current literature. We formally
define the problem in Section III while the details of our
SCM-based transfer learning framework are presented in
Section IV. The proposed framework is validated with exten-
sive simulations in Section V and experiments on real robots
in Section VI. At last, we draw conclusions in Section VII.

II. RELATED WORK

Transfer learning has been one of the most popular topics
in robotics, especially since machine learning techniques
have become widely exploited. The idea behind transfer

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 1289

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

36
68

2

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

learning is to migrate the knowledge between similar prob-
lems to boost the training process [6], take advantage of
existing knowledge [7], and reduce the risk of training
[8], [9]. Although machine learning approaches have been
massively explored, we cannot ignore that they typically
require a large amount of data and a lot of effort in training
the model.

The problem of transferring from the simulation to the
real world, also known as sim-to-real problem, has gained
rising attention recently. The gap between the simulation
and the real system exists mainly because either the model
is not accurate or the environment factors do not appear
in the simulation. The modeling gap can be closed by
retraining the pre-trained model in real world [10]. Dynamics
randomization is another popular solution which aims to
cover reality with augmented simulation scenarios [10] [11].
Other approaches include reducing the costly errors by pre-
dicting the blind spots in real environments [12] and inflating
safety critical regions to reduce the chance of collision [13].
Learning from demonstration is another sub-field of transfer
learning in which reinforcement learning is usually getting
involved. These types of works typically learn the policy
from teacher’s examples by approximating the state-action
mapping [14], or by learning the system model [15]. Most of
these problems turn into an optimization problem on tuning
parameters. Although fewer training demos are desired, it
can still take a large amount of data to address the problem.
Thus, both the acquisition of data and the tuning process can
be challenging when dealing with these types of problems.

To the best of our knowledge, the SCM method proposed
in this paper is rarely used in the robotics field. In [16], the
SCM is leveraged to map the planar motion to the continuous
linear motion to solve a coverage control problem for wire-
traversing robots. Comparing to the existing works, this paper
proposes a light-weight transfer learning framework which
does not rely on massive data collection. It is also the first
work that exploits the conformal mapping method to directly
transferring control inputs between two systems.

III. PROBLEM FORMULATION

The problem behind this work can be cast as a teacher
transferring knowledge to a learner vehicle. We assume that
the teacher has more capabilities than the learner, meaning
that it can achieve all the learner’s maneuver but not vice
versa. This assumption is suitable for our problem since
we are primarily interested in transferring knowledge into a
vehicle with degraded capabilities, and as it is easier to create
a virtual simulated vehicle with more capabilities than a
real vehicle in sim-to-real problems. The learner’s dynamics
are assumed a black-box model with only access to the
inputs and output. The goal is to transition the behavior and
control knowledge of the teacher into the learner including
adapting the teacher motion planning framework to consider
the limitations of the learner. Formally we can define two
problems:

Problem 1. Teacher-Learner Control Transfer: Given a
teacher robot with dynamics xT (t+ 1)=fT (xT (t),uT (t))
and control law uT =g(x), where x is the state vector and
u is the control input, find a policy to map uT to a learner

input uL such that xL(t+1)=fL(xL(t),uL(t))=xT (t+1),
with fL unknown.

Problem 2. Teacher-Learner Motion Planning Adaptation:
Consider a task to navigate from an initial location to a
final goal G. Assume that the learner’s input space uL ∈
[uLmin,uLmax] ⊂ [uTmin,uTmax]. Design a motion plan-
ning policy πLT for the teacher that considers the limitations
of the learner and such that the computed desired trajectory
τ can be tracked by the learner, i.e., such that |xL−xτ | ≤ ε
where ε is a maximum allowable deviation threshold.

IV. METHODOLOGY

Problem 1 is solved by leveraging SCM to comformally
map between the teacher’s and the learner’s command do-
mains. Problem 2 is addressed by constraining the teacher’s
control and planning policy in accordance with the learner’s
limitation. The block diagram in Fig. 2 shows the architecture
of the whole process. The remainder of this section describes
the details of the components of the proposed approach.

Fig. 2. The architecture of the proposed transfer learning process.

A. SCM-based Command Transferring

As we treat the dynamics of the learner as a black box, it is
impossible to build a one-to-one command mapping without
running inputs on the learner. In our work, we propose to use
a limited number of teacher commands to characterize the
learner’s dynamics and then use SCM to find the mapping
function between the region on the teacher’s command
domain and the corresponding region on the learner’s side.

We use command pairs to characterize the learner’s dy-
namics. The command pair up=〈uT ,uL〉 is a pair of
commands which makes the two vehicles produce the same
motion (i.e., reach the same pose, speed). Since the dynam-
ics of the teacher are known, by observing the states of
the learner before and after executing uL, the equivalent
teacher’s command uT can be retrieved. A group of these
command pairs can capture the dynamics of the learner
on the teacher command domain. At each control step,
the learner uses the teacher’s control policy to generate a
control input which is the teacher’s desired command as
if the learner was the teacher. Given a desired teacher’s
command and several command pairs around it, the region
whose vertices are from the command pairs and contains
the desired command can be chosen on the teacher side.
The corresponding region on the learner command domain is
decided automatically by the learner’s commands that come
from the same command pairs as the teacher’s vertices. An
example is shown in Fig. 3.

Once the regions of interest are determined on both
teacher’s and learner’s command space, the transfer problem
becomes a problem of finding the mapping function that
transfers from an irregular polygon on the teacher’s domain
to the other polygon on the learner’s domain. To solve this

1290

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. SCM maps the two polygon regions which are constructed by the
command pairs around the desired command (red cross on the left).

problem, first we use SCM to map the two polygons on
each side of the command domain onto two rectangles with
unique aspect ratios, which are decided by the shape of the
mapping area. The reason why we map the two regions onto
two different rectangles will appear as we walk through the
mapping procedure. Then, we use a unit square to bridge the
two rectangles so a teacher command can be mapped to the
learner’s domain. Fig. 4 shows the mapping flow.

Fig. 4. The mapping flow of transferring the desired teacher command to
the learner. A unit square is used as an intermediate plane to bridge between
rectangle mapping of the two polygons.

Based on the user’s preference, multiple command pairs
can be selected to build the mapping areas Γ. For any of these
irregular polygons, we can specify four of the vertices in the
counterclockwise order to map to the rectangle’s corners.
These four vertices make Γ a generalized quadrilateral.
Fig. 5 shows an example of this process, where we put
the polygon from the teacher command domain onto the
extended complex plane.

Fig. 5. The flow of conformal mapping that maps the polygon to the
rectangle while using the bi-infinite strip as the intermediate plane.

As shown in Fig. 5, the vertices of the polygon w1, ..., wN ,
(N≥4) are ordered in counterclockwise and the interior
angles α1π, ..., αnπ at each of the vertex wN is defined
as the angle that sweeps from the outgoing edge to the
incoming edge. The conformal mapping from the polygon
Γ to the rectangle Q needs to borrow a bi-infinite strip S
as an intermediate plane. The SCM function that maps the

points on the boundary of the strip S to the vertices of the
polygon is given by:

w = fΓ
S (z) = A

∫ z

0

N∏
j=0

fj(z)dz + C (1)

where A and C are complex constants that rotate, translate
and scale the polygon and are determined by its shape and
location. Each factor fj sends a point on the boundary of the
strip to a corner of the polygon while preserving its interior
angles. The factor fj is a piecewise function which is defined
by:

fj(z)=


e

1
2 (θ+−θ−)z j=0,
{−i · sinh[π2 (z − zj)]}αj 1 ≤ j ≤M , (2)
{−i · sinh[−π2 (z − zj)]}αj M + 1 ≤ j ≤ N ,

where M is the number points on the bottom side of the strip.
θ+ and θ− denote the desired divergence angles at +∞ and
−∞, which are θ+=θ−=π in our case.

By leveraging the Jacobi elliptic of the first kind [17], the
SCM mapping fSQ from the rectangle Q to the bi-infinite strip
S can be defined by:

z = fSQ(q) =
1

π
· ln(sin(q|m)) (3)

where q is the point on regular rectangle and m is the
modulus of the Jacobi elliptic that is decided by q. The
details of this conformal mapping can be found in [5]. With
Eqs. (1) and (3), a mapping function from the generalized
quadrilateral can be obtained. In order to explicitly solve (1),
there are three parameters zk that must be specified. For ease
of computation, for example, we can fix z1 = 0, z2 = L,
zN−1 = i, and zN−2 = L+i. The parameter L here is linked
to the conformal modulus m.

While the angles of the polygon are computed with (1)
and (2), we need to find where the pre-vertices lie on the
boundary of the strip to keep the length for each edge of
polygon. This problem is known as the parameter problem in
SCM [5]. Since we already fix z1 = 0, in (1) the translation
parameter is set to be C = 0. Hence, solving (1) is equal to
solving:

wk = A

∫ zk N∏
j=0

fj(z)dz, k = 1, 2, 3, . . . , N (4)

In (4), the scalar A can be eliminated by the ratio of the
adjacent sides length of the polygon:

wk+1 − wk
w2 − w1

=

∫ zk+1

zk

∏N
j=0 fj(z)dz∫ z2

z1

∏N
j=0 fj(z)dz

, k=2, 3, . . . , N − 2 (5)

Let

Ik =
∣∣∣ ∫ zk+1

zk

N∏
j=0

fj(z)dz
∣∣∣, k = 1, 2, . . . , N − 2 (6)

Then (5) can be rewritten as:

Ik = I1 ·
wk+1 − wk
w2 − w1

, k = 2, 3, . . . , N − 1 (7)

To this end, (7) leaves us N − 3 conditions and the
unknown parameters of (4) are zk (k = 1, 2, . . . , N − 3)
which is exactly the number of the side length conditions
given by (7) . We can get the complex constant A by:

1291

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

A =
w2 − w1∫ z2

z1

∏N
j=0 fj(z)dz

. (8)

As we get the conformal mapping function fΓ
S from

the strip to the generalized quadrilateral, we can compute
L = z2 − z1 = fΓ

S
−1

(w2)− 0. Considering (3) which maps
the rectangle to the strip, the SCM function that maps the
interior and the boundary of the generalized quadrilateral to
the rectangle with an unique aspect ratio can be obtained by:

q = fSCM (w) = fSQ
−1

(fΓ
S
−1

(w)). (9)

As the shape of the rectangle Q depends on the parameter
L, the aspect ratio of the rectangle is determined after L is
computed. This explains why we map the two polygons from
teacher and the learner command domains to two different
rectangles. Since the dynamics of the teacher and learner
are different, the shape of the polygons from the teacher
and the learner cannot be identical, and neither are the
mapped rectangles. A unit square is borrowed to bridge
between the two mapped rectangles resulting in a complete
mapping process from teacher to the learner, such that any
teacher command that falls in the teacher’s mapping area is
connected to an image on the learner side.

There are a few points that are worth mentioning: 1)
Although we use rectangle SCM and the number of the
vertices for a polygon is at least 4 (N ≥ 4), this mapping-
based transferring framework still works for the triangle areas
(N = 3) by leveraging a disk SCM function or an upper half-
plane SCM function. 2) If the distance between the desired
command and the existed closest command pair is smaller
than a threshold ψ, it means that the desired motion is very
similar to the motion produced by the closest pair. In this
case, it is reasonable to skip the mapping procedure and
directly use the learner’s command from the closest pair.
3) If the command pairs that are used for constructing the
mapping polygon are too far from the desired command,
some local geometric features between the two domains may
not be well captured during mapping. Thus, the number as
well as the distribution of the command pairs can affect the
mapping performance. More command pairs that cover the
learner’s command domain well are preferred.

B. Primitive Path Planning

As the vehicle learns the mapping function, it is also
important to know the limitations of the learner so that
the teacher’s policy can generate the command to plan the
motions that are compatible with the learner. This means
that we want to find where the command boundary of the
learner lies within the teacher command domain. This can be
achieved by getting the command pair up=〈uT (t),uL(t)〉
when uL(t)=uLmax. As shown in Fig. 3, the teacher’s
control inputs from these command pairs can build a multi-
dimensional convex hull that separates the interior of the
convex hull from the rest of the command area. From
the teacher’s perspective, the boundary of the convex hull
indicates the limitations of the learner. Any of teacher’s
commands from the interior of the convex hull can be
matched with the learner’s command, enabling the two vehi-
cles to produce the similar motion with their own commands.

However, as it is pointed out at the end of Section IV-A, to
obtain better mapping performance, it is recommended to
consider additional command pairs inside of the polygon.

We use a trajectory tracking case study to validate our
approach. The teacher uses a search-based path planning
method to compose a sequence of motion primitives that
allows it to drive along the desired path P within a certain
bounds. The teacher’s input sequence associated to these
primitives will be the desired commands for mapping.

A motion primitive results from feeding a known sequence
of control inputs to the vehicle. To build one primitive
p=[xT 1,xT 2, . . . ,xT t], we feed the teacher a sequence of
the same control input for a certain amount of time and
record its state sequence. Following the same procedure,
a library of primitives can be built with different teacher’s
command. In Fig. 6, we show 5 different motion primitives
that resulted from 5 different teacher’s commands. The one-
to-one primitives and the corresponding commands are color
coded. The command pairs are shown as the gray points and
the white region indicates the capability of the learner.

Fig. 6. The teacher commands and the corresponding motion primitives
are shown on the left while a path planning scenario is shown on the right.

We want to point out that: 1) To better adapt to the
capability of the learner, only the command which falls inside
of the convex hull should be considered. 2) The learner can
leverage the teacher’s motion planner as soon as the convex
hull is built. 3) The convex hull does not need to capture
the entire command domain of the learner, it just provides a
boundary that make sure the learner is operating within the
known capability.

As the path planner searches primitives from the library to
use, it evaluates the difference between each of the primitive
and the corresponding segment on the desired path. As
shown in (10) and in Fig. 6, the difference is measured by
considering both the dynamic time warping (DTW) distance
ed and the heading difference eθ at the end of the primitive:

δi = kd · ed + kθ · eθ
= kd ·DTW (P, pi) + kθ · |(θP − θpi)|,

p∗i = min
p1,...,pi

δi.
(10)

The two types of differences are weighted by two user-
defined gains (kd≥0, kθ≥0). A large kd will force the vehicle
to remain close to the trajectory while a large kt will give the
primitives that are parallel to the trajectory a better chance to
be chosen. Using this metrics, the planner searches through
all the primitives in the library and selects the one with
the least difference as the optimal local path plan p∗i . The
teacher’s control input u∗

T , which is associated to p∗i , is the
command that will be mapped to the learner.

1292

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

After a command sequence is executed, the learner will
evaluate the situation and use the planner to generate a
new local path and corresponding command sequence. The
learner will continue to repeat this planning procedure until
it arrives to the destination.

Since the learner has differing dynamics from the teacher,
as the learner executes the command sequence to follow the
composed path, it may deviate from it. When the learner is
in an open area, such deviation is not critical because the
command sequence only lasts a short period of time and it
can always be corrected by the planner at the next planning
step. However, such deviation can compromise the safety of
the learner when it maneuvers in a cluttered environment.
To provide safety guarantees to the system, we introduce an
event triggered mechanism to monitor the learner at runtime.
The runtime monitor measures the distance between the
learner and the planned path dê. The re-planning procedure
is triggered when dê>ε. The smaller that the threshold
ε is, the more conservative the learner behaves. As we
discussed, the learner does not need to constantly re-plan
if the deviation happens in an open area. Thus, the threshold
ε should be dynamically changed to reflect how crowded the
surroundings are. In our work, the threshold is defined as:

ε =

{
η ∗min(||p− oi||) i = 1, 2, . . . , No,

∞ i = ∅,
(11)

where No is the number of obstacles in the learner’s field of
view, oi is the position of obstacle i, and η is a constant.

V. SIMULATIONS
For the simulations, we created a general case study which,

we believe, is rich enough to represent the problems we are
dealing with. With the following case studies we demonstrate
how, thanks to our approach, a robot can quickly adapt
to downgraded dynamics due for example to a failure or
system’s aging. In this case, the teacher is a vehicle with
full capabilities while the learner is the same vehicle whose
dynamics are compromised. For ease of implementation, we
consider that both the teacher and the learner have small

inertia thus the acceleration period can be neglected (e.g., an
electric vehicle). The kinematics for both the teacher and the
learner are given by the following bicycle model:ẋẏ

θ̇

 =

(v · vmax) · cos θ
(v · vmax) · sin θ

γ · γmax

 , u =

[
v
γ

]
, (12)

where vmax and γmax denote the maximum capability on
velocity and steering angle of the vehicle. The learner’s
model is treated as a black box which takes in a control input
and produces the updated state of the learner. A Gaussian
noise of G ∼ N (0, 0.1) is added to the learner’s position
to simulate measurement errors. Since the teacher and the
learner are the same vehicle, the range of the control inputs
for both of the vehicles are same which are u={v, γ | v ∈
[0, 1], γ ∈ [−1, 1]}. However, the learner is downgraded so
that it can not achieve the same level of performance as
the teacher when it is given the same command. In this
case study, the maximum velocity vmax of the learner is
downgraded from 3 m/s to 1 m/s while the maximum steering
angle γmax is downgraded from π/3 rad/s to π/8 rad/s. For
example, the same control input v=1 drives the teacher at
3 m/s while the learner can only drive at 1 m/s. The learner
is asked to follow a ”S”-shaped trajectory while navigating
through a cluttered environment.

Fig. 7 shows two snapshots within the time frame of the
entire simulation. As the result shows, the learner is able
to closely follow the desired trajectory. The learner behaves
more conservatively when the obstacles are within the field
of view (FOV). In order to obtain the results in Fig. 7, a
sequence of 5 × 5 grid commands were fed to the learner.
Based on the change of the states before and after executing
the command, an equivalent teacher command is retrieved
and paired with learner’s input. All the command pairs are
shown in Fig. 8. The boundary of the commands on teacher’s
command space marks the limitation of the learner. The
learner can map the teacher’s command which falls in the
boundary to get the learner’s control input, and the mapped
control input will produce a similar maneuver as the teacher.

Fig. 7. The path following result of the entire simulation is depicted in (a). The local path planning of the SCM mapping results for the robot at position
‘A’ are shown in (b), (c), (d), and the results at position ‘B’ are shown in (e), (f), and (g).

1293

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. The command pairs are one-to-one color coded across the two
command domains.

Fig. 9 shows all the teacher’s motion primitives and
the corresponding commands. Each of the primitives are
constructed by driving the teacher with a certain control input
for 1 second. The command pairs on the boundary of the
convex hull are used to identify if the command for building
the motion primitive is within the learner’s capability. Among
all the 121 motion primitives, 35 of them are preserved after
the motion degradation and used for path planning.

Fig. 9. The primitives associated with the small gray commands in shaded
area are beyond the limitation of the learner and thus are discarded. The
available motion primitives and the associated commands are color coded.

For the path planner, we set the planning horizon to s=2
and the threshold to trigger re-planning as η=0.5. In Fig. 10,
we show the result of the learner driving directly with the
teacher’s commands without using our proposed approach.
As expected, the learner failed because it used commands
not adapted to its new dynamics.

Fig. 10. Simulation result for the case in which the downgraded learner
is directly given the teacher’s commands.

VI. EXPERIMENTS

Our proposed transfer learning approach was validated by
a set of experiments in which we transferred the planning
and control knowledge of a simulated teacher into two real
learner vehicles. The video of all experiments are avail-
able in the provided supplemental material. In each of the

experiments, we used the same simulated teacher vehicle.
The vehicle dynamic model can be approximated to the
one showed in the simulation experiments. The maximum
velocity vmax and the maximum steering angle γmax of the
teacher were set to be 1.6 m/s and ±1.2 rad/s respectively.
The proposed method was implemented in MATLAB and
we used the MATLAB ROS Toolbox together with Robot
Operating System (ROS) to control the vehicles. We used
MATLAB Schwarz-Christoffel toolbox [18] for computing
the mapping function. The experiments were conducted in
the indoor environment and the state of the vehicles are
captured by a VICON motion capture system.

Fig. 11. Jackal experiment with SCM.

Fig. 12. The Jackal’s capability is indicated within the white area. The
gray points on the dashed boundary are the commands that were tested on
the Jackal for extracting the limitations. The blue colored commands on the
left create the primitives on the right and are used for mapping to the real
UGV.

Fig. 13. Jackal experiment by directly feeding teacher’s command.

For the first experiment, we asked the learner vehicle to
follow an S-shaped path with the initial heading of π

4 from
the desired orientation. As shown in Fig. 11, a narrow gate
and an obstacle was set along the path. Using a Clearpath
Jackal UGV as the learner vehicle, we tested its capability
by sending certain commands over a period of 1 second,
and based on the change to the state, we retrieved the
equivalent teacher commands. The command pairs and the
teacher’s primitives that were used to plan the learner’s path
are demonstrated in Fig. 12. During the tracking mission,
the maximum distance between the desired path and the
actual trajectory was recorded as 0.1905 m and the maximum
deviation between the actual trajectory and the local motion

1294

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

plan was 0.0293 m. Considering the vehicle’s initial heading
is not aligned with the desired path and the size of the vehicle
is approximately 0.5 m×0.43 m×0.25 m, the maximum de-
viation was negligible. For comparison, the same experiment
without the SCM component was performed. As expected
and as shown in Fig. 13, the learner vehicle collided with the
gate and could not continue its task. Additionally, it can be
clearly seen that there was a mismatch between the learner’s
trajectory and the primitive which was given by the path
planner. This is also due to the fact that the teacher’s control
input was not mapped to the learner.

To show the generalizability of our proposed framework,
similar to the experiment with the Jackal UGV, we performed
another experiment with the same settings but this time
using a Turtlebot2 as learner. The command pairs and the
primitives which were used for learner path planning are
shown in Fig. 14. The result shows that with our proposed
approach, the Turtlebot2 could adapt the teacher controller
and path planner to track the desired path with the maximum
deviation of 0.1381 m. The tracking error between the
vehicle’s trajectory and the local planned primitive was small
within 0.0978 m as can be noted in the figure in which the
blue and the red segments are nearly overlapping throughout
the whole process.

Fig. 14. Similar to the Jackal experiment, the turtlebot experiment
command pairs and primitives are shown in the figure.

Fig. 15. Turtlebot experiment with SCM.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel light-weight transfer
learning framework based on conformal mapping. We use
SCM to directly map the control input from the teacher
to the learner without knowing the dynamical model of
the learner. The framework transfers not only the control
policy but also adapts the teacher’s motion planning policy to
make it compatible with the learner. The proposed method is
validated with both simulations and actual experiments. The
results show that the learner can safely adapt the control and
motion planning policy to suit its own dynamics.

In our future work, we are looking into leveraging multi-
dimensional conformal mapping to transfer from a higher-
order system to a lower-order system, such as from an aerial
vehicle to a ground vehicle. We plan also to extend our
framework to deal with learners that have more capabilities
than the teacher.

VIII. ACKNOWLEDGEMENTS

This work is based on research sponsored by DARPA
under Contract No. FA8750-18-C-0090.

REFERENCES

[1] H. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-guided
artificial potential fields with stochastic reachable sets for motion
planning in highly dynamic environments,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 2347–
2354.

[2] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and
L. Jurišica, “Path planning with modified a star algorithm for a mobile
robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.

[3] J. D. Marble and K. E. Bekris, “Asymptotically near-optimal planning
with probabilistic roadmap spanners,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 432–444, 2013.

[4] L. Pacheco and N. Luo, “Testing pid and mpc performance for mobile
robot local path-following,” International Journal of Advanced Robotic
Systems, vol. 12, no. 11, p. 155, 2015.

[5] T. A. Driscoll and L. N. Trefethen, Schwarz-christoffel mapping.
Cambridge University Press, 2002, vol. 8.

[6] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[7] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learn-
ing modular neural network policies for multi-task and multi-robot
transfer,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 2169–2176.

[8] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya,
X. Bruso, P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-
based testing of autonomous vehicles: From simulation to the real
world,” in 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2020, pp. 1–8.

[9] J. Zhang, B. Cheung, C. Finn, S. Levine, and D. Jayaraman, “Cautious
adaptation for reinforcement learning in safety-critical settings,” in
International Conference on Machine Learning. PMLR, 2020, pp.
11 055–11 065.

[10] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[11] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[12] R. Ramakrishnan, E. Kamar, D. Dey, E. Horvitz, and J. Shah, “Blind
spot detection for safe sim-to-real transfer,” Journal of Artificial
Intelligence Research, vol. 67, pp. 191–234, 2020.

[13] S. Ghosh, S. Bansal, A. Sangiovanni-Vincentelli, S. A. Seshia, and
C. Tomlin, “A new simulation metric to determine safe environments
and controllers for systems with unknown dynamics,” in Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Com-
putation and Control, 2019, pp. 185–196.

[14] S. R. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay, “Rein-
forcement learning for mapping instructions to actions.” Association
for Computational Linguistics, 2009.

[15] K. Hwang, W. Jiang, and Y. Chen, “Adaptive model learning method
for reinforcement learning,” in 2012 Proceedings of SICE Annual
Conference (SICE), 2012, pp. 1277–1280.

[16] G. Notomista and M. Egerstedt, “Coverage control for wire-traversing
robots,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 5042–5047.

[17] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for
engineers and scientists. Springer-Verlag, 1971.

[18] T. A. Driscoll, “Algorithm 843: improvements to the schwarz-
christoffel toolbox for matlab,” ACM Transactions on Mathematical
Software (TOMS), vol. 31, no. 2, pp. 239–251, 2005.

1295

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:23:05 UTC from IEEE Xplore. Restrictions apply.

