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Abstract— In communication restricted environments, a
multi-robot system can be deployed to either: i) maintain con-
stant communication but potentially sacrifice operational effi-
ciency due to proximity constraints or ii) allow disconnections to
increase environmental coverage efficiency, challenges on how,
when, and where to reconnect (rendezvous problem). In this
work we tackle the latter problem and notice that most state-
of-the-art methods assume that robots will be able to execute a
predetermined plan; however system failures and changes in en-
vironmental conditions can cause the robots to deviate from the
plan with cascading effects across the multi-robot system. This
paper proposes a coordinated epistemic prediction and planning
framework to achieve consensus without communicating for
exploration and coverage, task discovery and completion, and
rendezvous applications. Dynamic epistemic logic is the princi-
pal component implemented to allow robots to propagate belief
states and empathize with other agents. Propagation of belief
states and subsequent coverage of the environment is achieved
via a frontier-based method within an artificial physics-based
framework. The proposed framework is validated with both
simulations and experiments with unmanned ground vehicles
in various cluttered environments.

I. Introduction
Multi-robot systems (MRS) have the potential to assist

in many safety-critical applications such as search and res-
cue, military intelligence and surveillance, and inspection
operations where it may be hazardous and costly to deploy
humans. Looking to the state-of-the-art, we note that most
MRS research assumes constant communication between
robots [1]–[3]. However, within the aforementioned appli-
cation space, long-range communication is often unreliable
or unavailable. Humans adequately cope with such problems,
performing these tasks collaboratively by extrapolating and
empathizing with what other actors might believe if the local
plan must change at run-time. This subconscious process can
be modally represented as epistemic planning, computing
and reasoning about multiple predictions and actions while
accounting for a priori beliefs, current observations, and
other actors’ sensing and mobility capabilities.

In this work, we insist that if the robots in a team
could perform similar reasoning without communication then
we could relax the typical connectivity constraints, while
increasing autonomy (i.e., decrease human intervention) and
mission performance (i.e., more coverage, faster task dis-
covery and completion). For this reason, we propose a
novel epistemic planning framework for multi-robot sys-
tems, allowing each robot to cooperate without constant
communication by reasoning about teammates’ performance
and states, through the propagation of beliefs states about
each others. As a reader can note, calculating a distributed
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Fig. 1. Pictorial depiction of the problem. The proposed framework enables
a robot to reason from other agents’ perspectives as it experiences a behavior
change or observes that another robot is not where expected.

plan for coverage while accounting for any combination
of robot system failures, changes in the environments, or
deviations is intractable. Instead, constructing a finite set
of possibilities and implementing a reasoning framework
for each robot can reduce computational complexity and
allow for more efficient operations. Thus, we introduce
a coordinated epistemic prediction and planning method
in which a robot propagates a finite set of belief states
representing possible states of other agents in the system and
empathy states representing a finite set of possible states from
other agents’ perspectives. Subsequently, using epistemic
planning, we can formulate a consensus strategy such that
every distributed belief in the system achieves consensus. For
example, consider Fig. 1 where two robots are canvassing
an environment. During disconnection, Robot 1 maintains a
set of possible (belief) states for Robot 2 and also a set of
(empathy) states that Robot 2 might believe about Robot 1.
Once Robot 2 experiences a failure, it tracks another state
in its empathy set. We reason that though Robot 1 holds a
false belief about Robot 2’s state, there exists an epistemic
strategy that can allow robot 1 to find robot 2 (i.e., updating
its belief after observing robot 1’s believed state).

The contribution of our approach is two-fold: i) an epis-
temic planning formulation using dynamic epistemic logic,
formalizing beliefs and knowledge for robot control and ii)
a generalized task assignment and artificial potential field-
based model for belief propagation and coverage of an
environment with considerations for connectivity constraints
and team member dynamics.

II. RelatedWork
Heterogeneous multi-robot exploration, foraging, and cov-

erage have been widely studied in robotics literature [4]–[6].
Recent works consider communication restricted or intermit-
tent connectivity by modeling ways to maintain connectivity
while exploring [1], to account for momentary disconnection
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[7], or dropping intermediary notifications to other robots
[8]. Authors in [9] use a decentralized Markov decision
process to estimate future locations of robots when inter-
robot messages are delayed at a stochastic rate. Several works
have also included system failures or disturbances in multi-
robot exploration policies, such as in the work [10]; however,
the policy assumes robots are able to communicate these
disruptions. In most approaches, the execution policy is static
and communication is a constraint that either needs to be
satisfied for all time or at a defined location [11], [12].

A separate, but related, field to multi-robot coverage is
multi-robot task allocation (MRTA). MRTA is solved by
uniquely assigning a subset of robots to optimize the comple-
tion of an objective [13]. Authors in [14] include connection
limitations and allocate tasks to connected robots using
a bundling algorithm. Another example in [15] allocated
targets to individual teams and plans rendezvous with team
members to reduce uncertainty of targets over time.

Though recent works in multi-robot task allocation and
coverage have included realistic constraints, there is little
consideration for the combination of prolonged disconnec-
tion and system failures. In our previous work [16], we define
rendezvous points at known locations to coordinate roles for
any events during exploration; however, back-tracking to this
location reduced efficiency of exploration. In contrast, this
work applies dynamic epistemic logic (DEL) [17] to allow
a robot to reason about beliefs among actors in a multi-
robot system while disconnected and converge to a dynamic
rendezvous location. While classically used to describe how
knowledge and information changes for players in a game,
DEL is not a new concept in robotics. Using robot and
human actors, the framework in [18] recreates the Sally-
Anne psychological test where a robot must reason about
the human’s beliefs. Typical multi-robot applications use
DEL to solve for a cooperative set of actions in multi-
player games [19]. We extend DEL for a realistic multi-robot
application allowing each robot to reason about the system’s
state considering system failures, task discovery, and partially
known environments.

III. Preliminaries

A. Notation & Communication

Let us consider a multi-robot system of Na robots in the
set A, noting that our approach is suitable for heterogeneous
robots of differing capabilities (e.g., dynamics, sensing, etc.).
The system’s connectivity graph is denoted as G = (A,E)
where the set E ⊂ A × A represents edge connections
between robots and an edge (i, j) ∈ E indicates that robots i
and j are connected. Additionally, Nt tasks in the set T are
located in unknown positions within the operating environ-
ment. We assume the tasks are stationary and completed once
any robot i ∈ A navigates within a radius rt > 0, considering
that the number of tasks Nt is initially unknown to the robots.

The robots are assigned to search for the tasks in an
environment that is partitioned into Nm cells, which we define
as an occupancy map M ⊆ R2. When robots navigate to
observe unexplored cells Mu ⊆ M, M is updated using
Recursive Bayesian estimation [20], though any method can
be used. Subsequently, we define the frontier set F as the
set of explored cells adjacent to unknown cells.

B. Epistemic Logic
In this work, epistemic and doxastic logic [21] is used

to model distributed knowledge and reasoning for non-
catastrophic system changes during disconnectivity. To prop-
agate uncertain states of robots, we define Nb beliefs in
the set B as the behaviors likely to occur to agents during
operation. The set P = {P1, . . . ,PNa } holds the distributed
beliefs of all agents, where an element in Pi represents
possible states from an agent i’s perspective of robots j ∈ A.
Ψ is a set of functions that describe the current state of
the system. For this application, the epistemic language,
L(Ψ,P,A), is obtained as follows in Backus-Naur form [22]:

φF H(ω) | i^ j | φ ∧ φ | ¬φ | Kiφ | Biφ

where i, j ∈ A, H ∈ Ψ is a function to describe a system
state, and ω broadly indicates function arguments. ¬φ and
φ∧φ denote that propositions can be negated and form logical
conjunctions. Biφ and Kiφ are interpreted as “agent i believes
φ” and “agent i knows φ.” i^ j is an observability atom that
reads “agent i is within communication range of agent j”.

A pointed Kripke model (M) represents an epistemic
model [23] consisting of the set of possible states of the sys-
tem referred to as worlds, accessibility relations (R) between
worlds, w, that are possible for an agent, and a valuation
(V) that labels true propositions in each world. Dynamic
epistemic logic formalizes Kripke model transforms given
an event, a. In this work, we use dynamic epistemic logic
and Kripke models to modally represent a distributed strategy
using logical belief-based reasoning.

IV. Problem Formulation
In this paper, we consider a scenario in which a multi-

robot system must coordinate in a decentralized fashion to
efficiently search for tasks at unknown locations in a commu-
nication restricted, partially-known environment. There are
several challenges that arise to allow efficient and cooperative
behavior given limited communication including: 1) how to
efficiently explore, search, and cover a partially known envi-
ronment while remaining disconnected for extended periods
of time and 2) how to properly plan to take into account
uncertainties that could happen during disconnection that
lead to different behaviors of the robots in the systems.
Formally, we define this problem as:

Problem 1 (Communication restricted coverage): Find a
distributed policy to enable a multi-robot system to quickly
perform cooperative search of an environment for tasks with
intermittent communication accounting for uncertainties. The
policy should consider minimizing mission time while en-
abling periodic information sharing to cooperatively allocate
portions of the environment if a robot’s behavior changes.

V. Approach
In this section, we present the approach for the coordinated

epistemic prediction and planning framework which propa-
gates belief and empathy states to inform frontier assignment
and robot control, all while considering failures, task discov-
ery, and unknown obstacles. For ease of discussion let us
consider two robots i and j. From robot i’s perspective, a
belief state, pi j,b ∈ Pi, represents a possible state of a robot
j and an empathy state, pii,b ∈ Pi, describes robot i’s belief



Fig. 2. Diagram of the proposed approach. The contributions of this paper
are within the green box.

of robot j’s belief about robot i’s state. With this knowledge,
robot i predicts and tracks empathy states to ensure that a
robot j holds one true belief of the state of robot i. The
diagram in Fig. 2 summarizes this architecture.

As shown in Fig. 2, the robot i initially assesses whether
communication is successful with a robot j. If communica-
tion is successful, robot i uses its current state xi and the state
of robot j, x j, to partition its frontiers using a generalized
assignment problem (GAP) [24] and to predict future states
of robot j using an APF method. When connected, epistemic
planning is reduced to direct communication of states. If the
robots disconnect, a common belief set, Ci, acts as the state
for any robot j ∈ A from i’s perspective. Predictions for these
belief and empathy states are accomplished using the same
GAP and APF methods. A robot i then uses these predicted
states to plan considering its belief about robot j.

In both connected and disconnected conditions, the robot’s
objective is to search for tasks. If connected and a task
is discovered, the robots bid on and accomplish tasks. If
disconnected, the robots will deviate to accomplish the task
and subsequently continue to track its empathy state.

In the following sections, we lay out the key components
of the planner including: i) belief propagation, ii) MRS
coverage assignments, iii) epistemic planning for belief con-
sensus, and iv) obstacle avoidance and task discovery.

A. Belief & Empathy Propagation
In our coordinated epistemic prediction and planning

framework, the robots propagate belief and empathy states
for all robots in the multi-robot system. This allows a robot
i to plan according to its belief of other robots and reason
about what other robots’ expect robot i to accomplish while
disconnected. As previously noted, to account for uncertain-
ties over long periods of disconnection, it is important to
have a finite number of these states. With this goal in mind,
we define a finite set of particles, Pi, to represent these belief
and empathy states for the ith robot:

Pi = {pi j,b ∀ j ∈ A,∀b ∈ B}. (1)

The ith robot defines its empathy particles as Pe
i = {pii,b ∀b ∈

B} and its belief particles about other robots as Pr
i =

{pi j,b ∀ j ∈ A\{i},∀b ∈ B} where Pi = Pe
i ∪P

r
i . For each robot

j ∈ A, the robot i orders its belief and empathy particles 1
through Nb by likelihood of occurrence (i.e., from largest to
smallest). The order is initialized prior to deployment and
each robot i initially tracks its first empathy particles.

While not in communication range of other robots, each
robot i has a common belief about each robot j and itself.
We define robot i’s common belief as Ci ⊆ Pi and refer to it
as the common belief set. All robots track their first empathy
particle upon disconnection, Ci = {pi j,1 ∀ j ∈ A}.

If a robot experiences a failure, choosing which of its next
empathy particles to track is nontrivial, but we assume each
robot i is capable of computing the set of empathy states that
are suitable to track, denoted by Pt

i ⊆ P
e
i . The robot chooses

to track the particle in Pt
i with the highest likelihood. If

all robots are within communication range, the first particle
becomes the robot’s current state and subsequent particles
are propagated based on the updated common belief.

Since the robot will be tracking an empathy particle, these
states must propagate in a manner that allows the robot
to safely and efficiently accomplish the coverage objective
with considerations for intentional information sharing. Thus,
we propagate the particles using an artificial potential field
(APF) that leverages four main objectives: 1) attraction to
frontier, 2) cooperative rendezvous, 3) obstacle avoidance,
and 4) task completion. In this propagation method, the total
force acting on particle pi j,b is formulated generally as:

F total
i j,b = β1F1

i j,b + β2F2
i j,b + β3F3

i j,b + β4F4
i j,b (2)

considering βn is a weighting coefficient for force Fn
i j,b where

each Fn
i j,b corresponds to the nth objective listed previously

and will be discussed in detail. Local minima is avoided
using an A∗ path planner [25].

B. Frontier Attraction
A frontier-based exploration method is proposed here due

to its completeness and simplicity. To begin, the force F1
i j,b in

(2) is an attraction to a frontier set F ⊂ M. However, a robot
should only traverse unique portions of the environment to
reduce redundancy and minimize completion time. So, a
decentralized GAP assigns particles to a unique subset of
F using its belief of each robots’ capabilities.

For particle pi j,b, we allocate frontiers based on the cost
of assigning the particle or any other robot. Cost and bi-
nary assignment are denoted as Λ and Γ, respectively. The
corresponding GAP is formulated as:

Fi j,b = min
∑
k∈A

∑
z∈F

λzkγzk

s.t.
∑
k∈A

γzk = 1, ∀z ∈ F∑
z∈F

γzk ≤ u, ∀k ∈ A (3)∑
z∈F

γzk ≥ `, ∀k ∈ A

γzk ∈ {0, 1}, ∀k ∈ A, ∀z ∈ F

where the elements λzk ∈ R≥0 and γzk represent the zth frontier
and kth particle in the matrices Λ and Γ, respectively. Cost
generally refers to any traversal metric (i.e., energy, time,
etc.) to a frontier point z ∈ F . The variables u ∈ N and
` ∈ N are the upper and lower bounds on the number of
frontier points that can be assigned to any particle. Each
robot i calculates the frontier assignment for each particle in
the set Pi and the assigned frontier set is denoted as Fi j,b.

Subsequently, to utilize the GAP solution, the force F1
i j,b

controls the bth particle pi j,b towards its assigned frontiers

F1
i j,b =

1
|Fi j,b|

∑
z∈Fi j,b

sz − pi j,b

||sz − pi j,b||
3 (4)



where | · | indicates the set’s cardinality and the coordinate of
a zth frontier is designated as sz. The force computed in (4)
encourages particle motion to the unexplored regions of the
environment Mu based on their frontier assignment in (3).

C. Epistemic Planning
Intentional information sharing allows an agent to com-

municate any environmental or capability changes with other
robots. For this purpose, we introduce F2

i j,b in (2) to control
each particle pi j,b according to robot i’s common belief set:

F2
i j,b = ϕi

∑
k∈A

ck − pi j,b

||ck − pi j,b||
3 (5)

ϕi =

{
−h(tr, τ), tr < τ

h(tr, τ), tr ≥ τ
(6)

where ck denotes the kth element in Ci. Variable τ is a time-
based threshold for rendezvous and h : (tr, τ) 7→ R≥0 where
tr is the time lapsed since the last successful communication.

Fig. 3 shows the effect of ϕi. Given the partitioned frontier
from (4), the robots’ particles are incentivized to travel i)
away from ck when ϕi < 0, ii) towards its assigned frontier
when ϕi = 0, or iii) towards ck when ϕi > 0. We denote the
line between common belief particles as the anchor line. In
this way, (5) controls all of robot i’s particles to all beliefs in
Ci when tr > τ. This is formalized in the following lemma:

Lemma 1: If F2
i j,b = 0, as t → ∞ all particles in the set

{pi j,b | pi j,b ∈ P} will converge to ck, ∀k ∈ A.
Proof: Given the limt→∞ F1

i j,b + F4
i j,b = 0 once all area

has been covered, the only force acting on each particle will
be F2

i j,b. Also, ϕi > 0 since tr > τ when t → ∞, all particles
in the set {pi j,b | pi j,b ∈ Pi} will converge to ck ∈ Ci.

Considering that the ck ∈ Pi is controlled via (5), all
common belief states in Ci converge and so, all particles
in Pi converge to the same rendezvous location. Thus,
it is imperative to ensure that while the robots are not
communicating they can reach consensus such that

Ci ≡ C j, ∀i, j ∈ A. (7)

We coordinate this consensus using dynamic epistemic logic.
Referring to the previously established semantics for DEL

in Sec. III, we introduce the set Ψ consisting of a binary and
tertiary function, track and anchor, noting the argument
for the ith robot is denoted as Ai for readability in the epis-
temic model. The function track(Ai, pii,b) is read as “robot

(a) ϕi < 0 (b) ϕi = 0

(c) ϕi > 0 (d) Reconnected and reset

Fig. 3. Depiction of APF forces for each particle given different ϕi over
time. The color of the anchor line indicates communication (green) or no
communication (red).

i is tracking empathy particle b” and anchor(Ai, pii,b, pi j,b)
is read as “robot i is using belief particle pi j,b and empathy
particle pii,b as its common belief.”

Since a robot’s failures can affect a robot’s capabilities
in disparate ways and at any time, we formulate a strategy
for rendezvous that accounts for all possible combinations
of failures. Given that robots are connected given a commu-
nication graph G, we also assume particles can observe each
other similarly (e.g., based on range, line-of-sight), denoted
logically as pi j,b^pik,b. If two common belief particles have
observed each other, we know that one of four events have
occurred for two robots: i) Ai has observed that A j is not
tracking the common belief particle, ii) A j has observed that
Ai is not tracking the common belief particle, iii) neither
agents observe either common belief particle, or iv) both
agents communicate. In events (i)-(iii), neither robot knows
the true system state since the robots did not communicate.

Given that our current common belief is the bth particle
and all particles are within observation range, we define the
consensus-based policy sequence formally as:

a0 = pi j,b^p ji,b ∀i, j ∈ A
a1 = anchor(A j, pi j,b+1 ∀ j ∈ A)
as = a0 ⊗ a1

such that the frame-policy update is:

fb+1 = fb ⊗ as (8)

where b ∈ B\{Nb} and ⊗ is a modal product. This strategy is
used until all robots communicate at which time the particles
are reset to the robots’ poses and dynamics are updated.

Example: Consider f0, f ′0 , f1 in the Kripke model shown
in Fig. 4 where the true world is denoted by the black
vertex, edges represent accessibility relation (R), and new
propositions (V) are denoted in each worlds’ sets. From the
perspective of robot A1, each robot initially tracks particles
p11,1, p12,1 and p13,1. All robots propagates four possible
belief states for each teammate and four empathy states
of itself. We denote robot A1’s knowledge and belief of
his own state as K1 track(A1, p11,1). Similarly, robot A1’s
knowledge and belief about his teammate’s state is repre-
sented as B1track(A j, p1 j,1), j ∈ {2, 3} and empathy from
robot A1’s perspective is shown as B1B jtrack(A1, p j1,1), j ∈
{2, 3} and can be read as “robot A1 believes that robot j
believes that robot A1 is tracking particle 1”. We denote the
initial common belief propositions for all three agents as
anchor(Ai, pi1,1, pi2,1, pi3,1), i ∈ 1, 2, 3.

After disconnection (as shown in f ′0 in Fig. 4), the robots
can no longer assume to have knowledge about the true state
of the system. In this scenario, A3 experiences a failure such
that track(A3, p33,2) and updates its common belief (w1).
However, A3 subsequently reasons that A1 and A2 hold a
false belief that A3 is still tracking the first particle. Thus,
A3 reverts its common belief in w2 to mirror the initial
proposition such that anchor(Ai, pi1,1, pi2,1, pi3,1).

When A1^p13,1 in f ′0 , A1 and A2 are are connected and
so A1 relays that A1^p13,1 ∧ A1^¬A3, reasoning that A3 does
not know that both agents are still tracking their respective
first particle. A3 also knows that all three first particles
are within communication range, but cannot observe any



Fig. 4. Example scenario where A3 experiences a failure. The Kripke
models are shown in the gray boxes with frame transitions denoted as an.

additional information. Thus, all three agents update their
common belief such that anchor(Ai, pi1,2, pi2,2, pi3,2) and all
particles begin converging to the updated common belief set.

D. Obstacle Avoidance & Task Completion
Finally, we consider the last two forces in (2). To avoid

obstacles, force F3
i j,b is formulated as:

F3
i j,b =

1
|O|

∑
o∈O

so − pi j,b

||so − pi j,b||
3 (9)

where so ∈ C is the coordinate for an obstacle o ∈ O in the
environment. We note that O is a set of the commonly known
obstacles for all agents. For example, if a robot individually
encounters an obstacle, but has not communicated its location
to all teammates, the particles’ motions are not affected by
this new obstacle which is unknown to other robots.

For attraction to tasks, the force F4
i j,b is only active when

all agents are connected to propagate particles towards any
commonly known tasks. These tasks are centrally auctioned
and each robot submits a bid based on estimated traversal
time to the task. Assigned tasks placed in a queue set Qi, and
distributed to robot i’s particle task queues, Qi j,b. Attraction
to the first task, Qi j,b[1], in a particle’s queue is formulated
as:

F4
i j,b = Qi j,b[1] − pi j,b (10)

where the coefficients for F1
i j,b and F4

i j,b depend on the
particle’s queue Qi, such that:{

β1 = 0 and β4 > 0, if Qi , ∅,

β1 > 0 and β4 = 0, otherwise.
(11)

Once the task queue is empty, the particle force for tasks is
set to zero and coverage resumes.

E. Particle Tracking
After particle propagation has occurred, a robot must pre-

dict and track its empathy particle considering the possibility
of a new obstacle or discovering a task while disconnected.
Though any constrained tracking algorithm can be employed,
we use a nonlinear receding horizon controller (RHC) to
minimize the distance to the particle while maintaining a
radius from any obstacle [26]. Additionally, if the team is

disconnected and a robot discovers a task within its observing
radius ro, the tasks are re-indexed by monotonically increas-
ing cost and placed in the set Qi. The controller’s goal is
updated to the first queued task location. Once the robot has
traveled within the completion radius, rt, the robot continues
tracking its respective particle and the task is removed from
the robot’s queue. An example for both obstacle avoidance
and task discovery are shown in Fig. 5.

(a) (b)

Fig. 5. Examples of necessary deviation. In (a) the robot spots a task and
updates its RHC goal. In (b) the robot must avoid a discovered obstacle
while minimizing distance to the particle.

VI. Simulations

In this section, we provide results and comparisons from
MATLAB simulations with our approach implemented on
a two robot team. Simulations were performed on 15 ran-
dom 50m × 50m environments with 5-15 initially unknown
obstacles and a maximum of seven tasks. The robots start
by assuming that the environment has no obstacles and do
not know the location of the tasks. We compare the results
between: 1) no failures, 2) one failure by one robot, and 3)
one failure by each robot at random times.

Fig. 6. Snapshots of example simulations. The robots experience a failure
each at random times with 11 unknown obstacles and 7 tasks.

Fig. 7. Comparison between methods given 0, 1, and 2 failures.



(a) (b) (c) (d) (e)

Fig. 8. Snapshots and results of an experimental case study.

Each robot propagates three particles traveling at 2m/s,
1m/s and 0.5m/s. A failure can cause the robot to track
either the second or third particle. The particles propagate
according to these failure velocities and the maximum com-
munication range is 10m from the center of the robot.

The proposed approach is compared against two other
methods. The first method applies a constant connectivity
constraint, not allowing agents to travel outside of a 10m
communication range. The second method assumes ideal
conditions, where robots can communicate across the entire
environment. Both methods use an artificial potential field
technique for controlling the robots towards uncovered re-
gions and away from obstacles. In all methods, the initial
maximum velocity is 2m/s, the simulated LiDAR range
is 5m, and the robots’ motion is modeled using unicycle
dynamics. Fig. 6 shows an example at various time steps for
the three methods, displaying the coverage disparity of the
connected method versus our proposed method and showing
the similarities between our method and the ideal method.

As shown in Fig. 7, the proposed method outperforms the
fully connected method in all scenarios. Additionally, the
median coverage time for the proposed method is similar to
the ideal method, even with the communication limitation.

VII. Experiments

The proposed approach was also validated through labora-
tory experiments with a two-robot team. The team consists
of a Husarion ROSbot 2.0 UGV and a Turtlebot3 Burger
UGV using a Vicon motion capture system. The two-robot
experiments effectively demonstrate all parts of the proposed
approach, including intentional disconnections, searching,
and rendezvousing behaviors. In all experiments, the UGVs
start within communication range and are tasked to cover the
environment and complete any discovered tasks.

Experiments were performed in a 4m×5.5m space con-
taining convex obstacles considering, as a proof of concept,
a sensing and communication range for each robot of 1m.
Displayed in Fig. 8 are the results from the two-robot exper-
iment in which the vehicles are required to search for and
complete two tasks unknown a priori. The columns of Fig. 8
correspond to different instances within the experiment, and
each row from top to bottom shows snapshots of the robots
at different times throughout the experiment and the current
map of the environment covered by the team. In Fig. 8(a),
the UGVs start to cover the map in search of tasks and

Fig. 9. Graphical coverage over time for the experimental case study.

disconnect. Robot 1 (ROSbot) finds a task and completes
it. In Fig. 8(b), robot 2 (Turtlebot) experiences a fault and
begins following the second empathy particle. In Fig. 8(c-d)
the robots connect, share fault information, and bid on the
discovered task. Robot 1 receives a larger share of the frontier
as a result of Robot 2’s failure and Robot 1 is assigned the
task based on proximity. Finally, once all tasks are completed
and no frontiers remain, the agents rendezvous and the final
results are shown in Fig. 8(e). Final coverage over time for
each robot is shown in Fig. 9. More lab experiments with
two-robots are included in the supplementary material.

VIII. Conclusion & FutureWork
In this work, we have presented a novel framework for

multi-robot systems to use epistemic planning to propa-
gate and behave according to a set of beliefs. The pro-
posed method promotes disconnection using frontier-based
exploration and includes a dynamic rendezvous approach
to reconnect and share data among the multi-robot system.
The extensive simulations and experiment results show the
validity, applicability, generality of the proposed method.
Using this framework, we also demonstrate improved task
completion and coverage time of partially known environ-
ments with respect to standard coverage methods. From here,
future theoretical work includes addressing the challenges of
dynamic task lengths and optimal strategies for intentional
information sharing in complex or unknown environments.
Further modeling of epistemic planning using epistemic
MDPs to reach a more informed consensus for faster infor-
mation dissemination is also on our agenda. Additionally, we
plan to apply this framework in outdoor experiments using
robots equipped with short-range communication devices.
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