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Abstract—Unmanned Aerial Vehicles (UAVs) are becoming
increasingly popular thanks to the multiplicity of operations in
which they can be deployed such as surveillance, search and res-
cue, mapping, transportation, hobby and recreational activities.
Although sensors like LIDARs and cameras are often present on
such systems for motion planning to avoid obstacles, collisions
can still occur in very dense and unstructured environments,
especially if disturbances are present. In this work, we research
techniques to recover UAVs after a collision has occurred. We
note that the on-board sensors, especially the inertial sensor used
to stabilize the UAV, run at a high frequencies obtaining hundreds
of data points every second. At run-time, this can be leveraged
at the moment of a collision to quickly detect and recover
the system. Our approach considers knowledge of UAV system
dynamics to predict the expected behavior of the vehicle under
safe flight conditions and leverage such expectations together
with inertial data to detect collisions rapidly (on the order of
milliseconds). We also propose a potential field-based approach
to map the collision and create the correct reactive maneuver to
avoid the collided object and bring the system back to a stable
and safe configuration. Experiments are executed using ROS on
two micro-quadrotor UAV platforms having different dynamics
and performances, while colliding with poles and walls positioned
in different configurations. In our results, we are able to show
that the UAVs are successfully able to detect and avoid a collision,
while also providing a rigorous analysis of the conditions in which
the system can recover from imminent collisions.

Index Terms—UAV navigation, Collsion recovery, Motion plan-
ning I. INTRODUCTION

Recent advancements in drone technology have expanded
their usability into diverse fields such as delivery services,
reconnaissance, and search and rescue. In many applications,
using an unmanned aerial vehicle (UAV) instead of an actual
human being to complete a mission is safer and more cost
efficient. However, as noted in [1], drones are being employed
in unknown environments where levels of interaction and
contact are high. Deploying drones in these situations can be

Fig. 1. Example of UAV colliding with an obstacle and ultimately failing.

advantageous, but in the case of UAV collision as depicted
in Fig. 1, valuable technologies can be lost, sensitive infor-
mation can be stolen, and safety of those in the surrounding
environment can be threatened. Current research in this area is
divided in two categories: 1) improving resiliency of the outer
physical frame and 2) detecting collisions using sensor data
and provide recovery operations. In this work, we focus on the
second approach. By using an external frame to absorb most of
the contact, a UAV may be more robust and likely to survive
a crash than one without a protective frame. But this may
not be enough to guarantee that the system will recover after
collision, as depicted in Fig.1. The second approach is better
as it leverages sensor data to detect collisions, stabilize, and
recover. In this work we build a framework that leverages the
internal inertial data compared with the commanded inputs to
detect and estimate the point of collision (POC) and use such
information and artificial potential field theory to recover the
UAV into a stable flight.

The rest of the paper is organized as follows: in Section II,
we discuss the state of the art on drone collision resiliency
and recovery. Section III details our problem statement, and
Section IV covers our overall approach for detection, estima-
tion, and recovery. Section V follows by providing results from
testing with two UAVs. Conclusions and discussion on future
work are finally drawn in Section VI.
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II. RELATED WORK

As mentioned in the previous section, current research on
collision recovery focuses either on building external mechani-
cal protections or using sensing and planning/control methods.
Authors in [2] deal with the former method and propose
a flexible frame that absorbs the impact experienced during
crashes and lifts the UAV if it falls over. Similarly, authors in
[3] structure their outer frame in a spherical shape creating a
gimbal-like system to maintain the UAV at level flight.

Standing from a sensing and control point of view, authors
in [4] characterize the equations of motion and design con-
trollers to maintain stable flights on a quadrotor despite losing
multiple propellers. Authors in [5] focus on an encoded colli-
sion strategy that takes form in three stages: detection, logic
and recovery, and characterization with respect to the UAV
behavior. Authors in [1] expand on this idea by developing a
strategy where the drone switches from a normal flight state to
a recovery state at the POC by leveraging an admittance and
impedance controller. Authors in [6] also present a similar
system architecture, however they consider solely utilizing
IMU data for estimating the UAV attitude and velocity. Finally,
standing more from a machine learning point of view, authors
in [7] solve the problem of detecting and responding to failures
on actuators and sensors by training a reinforcement learning
policy for fault-tolerant control of UAVs.

In our work, we consider similar challenges from the afore-
mentioned work and build a sensor-based reactive framework
to detect and estimate the point of collision at run-time to
quickly recover the UAV into stable flight.

III. PROBLEM STATEMENT

In this project, we aim to study methods to recover and
reconfigure a UAV into a safe mode of operation and if pos-
sible, continue the mission, even with degraded performance.
Formally:

Problem - UAV Collision Recovery: Consider a quadrotor
UAV tasked to perform a go-to-goal operation while avoiding
No obstacles positioned at oi = [xo,i, yo,i, zo,i]

′, with i =
1, . . . , No, along its followed trajectory τ . The quadrotor op-
eration is considered safe and successful iff ||x(t)− oi|| > ε,
∀t > 0 and ∀i = 1, . . . , No, where ε is a minimum distance to
maintain that considers the dimension of the quadrotor and ||·||
is the euclidean distance norm. If a collision with an obstacle
i occurs at a time t̂, then ||x(t̂)− oi|| ≤ ε. The objective is to
find a policy to recover the system after a collision such that
∀t > t̂:

||x(t)− oi|| > ε

||z(t)− zground(t)|| > ε (1)
lim
t→T
||x(t)− xgoal|| = 0

where x(t) = [x(t), y(t), z(t)]′ is the 3D position of the
quadrotor at time t and zground(t) is the height of the ground at
time t. The first two conditions in (1) provide safety margins to
maintain a safe distance from obstacles and the ground, while
last liveness condition is to guarantee that after a recovery
is performed, if possible, the system continue the planned
operation toward the goal. Note that if continuing the operation

is not feasible, we would like to obtain a policy to at least
stabilize and safely land the UAV before the goal.

IV. APPROACH

Fig. 2 summarizes our framework for our approach to
collision detection and recovery. We assume a quadrotor has
a designated goal to visit and encounters one or multiple
stationary obstacles during its operation. When a collision with
an obstacle happens, the quadrotor enters a three-fold process:
1) detection 2) estimation and 3) recovery. Detection involves
monitoring quadrotor inertial data during flight which is ideal
because such data is available in any UAV. Estimation is the
stage used to identify and record the POC with respect to
the quadrotor. The POC is determined by further analyzing
quadrotor IMU data at the moment of a crash. Finally, the
recovery involves stabilizing the vehicle after the crash and
then creating an adjusted path toward its desired goal. The
estimated POC is used to remap the quadrotor’s flight path.
This stages are further explained in the next sections.

Fig. 2. Diagram of the proposed framework consisting of detection, estimation
and recovery.

A. Collision Detection
The first component of our recovery scheme consists on

the design of a detector based upon the linear acceleration
data coming from the on-board IMU. This data source is
universal to all UAVs and can rapidly detect changes in the
vehicle’s motion. For the horizontal axes of the vehicle (X
and Y), the detector is triggered when the magnitude of the
linear acceleration a exceeds a threshold value ∆ determined
through experimentation:

||axy|| =
√
a2x + a2y > ∆ (2)

This method alone is not sufficient, as it does not account
for collisions that can occur in the vertical dimension of the
vehicle. Also, noise and the influence of the vehicle’s attitude
on the IMU readings make such detection sub-optimal. To
overcome these challenges, the detector algorithm analyzes
less noisy data from the Z-axis. Most collisions in the hori-
zontal plane will cause a shock to travel through the body of
the UAV and will register a spike in linear acceleration in the
Z-dimension of the vehicle. This change in acceleration can
be used to quickly detect collisions not along the Z-axis as
shown in Fig. 3.

Because the accelerations experienced by the IMU during
vertical maneuvers easily exceed an otherwise reasonable trig-
ger threshold, instead of a simple threshold, the Z-axis detector
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Fig. 3. Vertical (Z) acceleration during a horizontal collision.

compares the response of the system to the commanded thrust
in order to detect deviations that indicate a collision. As can be
seen in Fig. 4, the commanded thrust and resulting acceleration
of the UAV track each other well during maneuvers, with a
slight delay.

Fig. 4. Raw data comparing the commanded thrust to the IMU Z-acceleration.
A slight phase shift is necessary to account for the delay between signals.

The Z-axis detector first accounts for the phase shift
between the commanded thrust (Tc) and acceleration (az)
by shifting the commanded thrust with an offset, tσ , ear-
lier than the current time (tc), obtaining a shifted thrust
Ts = Tc(tc − tσ). Then, the detector subtracts az from Ts
and evaluates against the trigger threshold as shown in the
following equation:

|Ts − az| < ∆z (3)

This operation filters the effects of the commanded thrust
out of the UAV’s Z-acceleration data. The resulting signal
then captures only accelerations that are caused by an outside
disturbance, such as a collision. By filtering out the effects
of the commanded thrust, the resulting signal is held steady
around the point of zero acceleration, with only minimal noise
remaining. As a result, any significant spike in acceleration
likely signifies a collision. Fig. 5 shows this cancelling effect
applied to a UAV’s maneuvers. Plot (a) shows that after the
command-correction is applied, the resulting signal in (c) stays
between nominal values for no collision cases, while plots (b)
and (d) show the detection operation during a collision.

B. Collision Characterization and Estimation

The second component of our approach is to characterize
where the UAV collided with respect to the UAV and its
environment. The goal is to identify the POC, oi, which will
be recorded as a known obstacle to be avoided in the future.
When a collision occurs, the resultant behavior can be divided
into two categories: 1) the quadrotor bumps in the opposite
direction of motion or 2) the quadrotor continues its motion
tilting toward the obstacle. Both of these scenarios can be
classified by checking the sign of the X and Y acceleration
components in relation to the direction of motion of the UAV.
For example in Fig. 6, we show the linear acceleration data
for an experimental case study in which the quadrotor was
traveling in the positive Y direction. Around t = 15s, the
quadrotor has a collision recording accelerations in the -X

(a) (b)

(c) (d)

Fig. 5. Comparison between filtered command thrust data and z-acceleration
values for a no-collision case (a),(c) and a collision case (b),(d).

Fig. 6. The X and Y linear acceleration of a quadrotor colliding twice with
the same obstacle oriented at 135◦. Note the sign changes in the acceleration
components.

and -Y directions. At t = 22s, the quadrotor collides again
this time with accelerations in the +X and +Y directions.
Both cases in this example are distinctive and associated with
obstacles oriented with angles 90◦ < θ < 180◦. For any
collision case, we argue that a quadrotor should move in
the direction opposite to its original flight direction along the
normal of the POC. Based on these observations, we built the
following estimator.

Consider the position of the quadrotor x(t) and ε its radius
which is calculated as the distance from its center to the tip of
one propeller. We define v(t) to be the quadrotor’s command
velocity vector, and a(t) as the quadrotor’s linear acceleration
vector. Under level flight, the angle λ between v(t) and a(t)
at collision is defined as:

λ = cos−1
(
a · v
‖a‖‖v‖

)
(4)

The estimation vector ei is then computed by:

ei =

{
a
‖a‖ε, if λ < 90◦

− a
‖a‖ε, if λ ≥ 90◦

= 〈xe, ye〉 (5)

and used to ultimately determine the POC oi as follows:

oi = {xo, yo, zo} = {x(t) + xe, y(t) + ye, z(t)} (6)
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C. Collision Recovery
The recovery approach has two main components: first

stabilization, and then trajectory replanning.
1) Stabilization: The first phase of recovery begins by

enforcing “aggressive” maneuvers to return to a horizontal
configuration as quickly as possible. This allows the drone to
achieve stability, and ensure the thrust is oriented correctly for
further recovery maneuvers. The major challenge encountered
during this phase is the non-linear nature of quadrotor dynam-
ics at extreme pitch and roll angles. For these cases, a simple
PID controller is not sufficient to achieve both quick response
and low overshoot. To address this problem, we developed
a gain-scheduled PID controller to provide a robust solution
that is easy to implement on many platforms. Previous research
into this control scheme [8] in the context of quadrotors shows
that a gain-scheduled PID controller can achieve stability as
quickly as 0.2 seconds with little to no overshoot. Because
this method only requires changing PID gains in response to
the current pitch and roll, implementation typically requires
minimal changes to the existing controllers. However, this
method does require physical testing or accurate simulation
of the dynamics of the vehicle to determine the appropriate
values for the gains across the operating range.

2) Replanning: The second component of recovery is to
replan a flight path for the quadrotor after a collision occurs.
Given a quadrotor with a desired goal, we aim to minimize
the possibility of it colliding with the same obstacle multiple
times. We propose to leverage the theory of artificial potential
fields as an approach to obstacle avoidance [9]. The idea is that
any object placed at any point in this potential field desires to
move to a position of lower potential. This can be calculated
into a vector field based on the gradient (7) of the potential
function for every point x in the field at a particular time t.
A quadrotor’s velocity at a point x is calculated in (8) as the
negative gradient of the potential field or the sum of all forces
acting on the field:

∇U(x) =

[
∂U

∂x1
(x), ...,

∂U

∂xm
(x)

]′
(7)

τ (x) = −∇U(x) = Fatt(x) + Frep(x) (8)

For our approach, the potential field generated is the sum of
one attractive field and multiple repulsive fields. The attractive
field component and subsequent force vector calculation is
given by:

Uatt(x) =
1

2
ξ(‖x− xgoal‖2)

Fatt(x) = −∇U(x) = −ξ(x− xgoal)
(9)

where x is the quadrotor’s position, xgoal is the goal position,
and ξ is a constant gain.

In section IV-B, we proposed a method for calculating the
POC. This position is then recorded and used to create a map
of POCs. This map of POCs is then used to create repulsive
potential fields to recover the UAV as follows:

ρ(x) = ‖x(t)− oi‖ (10)

Urep(x) =

 1
2η
(

1
ρ(x) −

1
ρ0

)2
, if ρ(x) ≤ ρ0

0, if ρ(x) > ρ0

Frep(x) = η

(
1

ρ(x)
− 1

ρ0

)
1

p2(x)
∇ρ(x)

(11)

where the function ρ(x) is used to calculate the distance
between the quadrotor and the nearest POC in (10); x(t) is the
quadrotor’s position at time t, and oi is the POC calculated
from (5). Each obstacle in this environment is represented as
a repulsive field expressed in (11), where η is an experimental
constant, and ρ0 is the distance from which the repulsive
field begins acting on the quadrotor considering the dimension
paramter of the quadrotor, ε.

V. RESULTS

A. Experimental Setup

Our approach was validated through experimentation with
two quadrotors in a controlled environment: 1) a DJI Tello
quadrotor protected by propeller guards which is a robust
platform but with limited access to the low-level controller and
2) an unprotected Crazyflie 2.0 quadrotor, which provides ac-
cess to low-level control parameters. Orientation and position
information for all experiments were acquired using on-board
IMU sensors and a Vicon motion capture system (MOCAP),
for ground truth. To test and analyze our framework on these
two platforms we considered collision on a pole and on a flat
panel positioned at different orientations.

In Fig. 7, we show the ROS architecture used during
experiments.

Fig. 7. Experimental setup utilizing ROS architecture.

To help analyze the behavior of the UAV during a col-
lision, we created a Matlab script that provides playback
from different point of view angles as well as slow motion
capabilities of MOCAP data in a fully simulated environment.
The code of the simulator can be found at https://github.com/
UVA-BezzoRobotics-AMRLab/Fly-Crash-Recover.

B. Protected Quadrotor Case Study

Our first set of experiments considered a protected DJI
Tello quadrotor colliding with a wall obstacle. Fig. 8 shows a
sequence of snapshots for the implementation of our approach
in which the quadrotor successfully detected and maneuvered
away from the wall.

Fig. 8. A quadrotor detecting a collision and recovering from the crash site.

In Fig. 9, we show the trajectory of a Tello in flight and
encountering a wall obstacle in different orientations. In these
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(a) 45◦ Wall Obstacle (b) Flat Wall Obstacle (c) 135◦ Wall Obstacle

Fig. 9. Three experimental cases with the DJI Tello

examples, the Tello begins at the green dot around (0,-1.5)m
with a goal point at (0,1)m, marked by the black star. Upon
colliding with the obstacle, detection is triggered determining
the angle of collision, and recovering by moving in a correct
direction away from the obstacle. Fig. 9(b) shows the full
trajectory of the quadrotor associated to the snapshots in Fig. 8,
where the vehicles encountered and detected the collision
with a flat wall and maneuvered around it toward the goal.
Fig. 10 details the acceleration and commanded velocities data
occurring during the flight in Fig. 9(a). The quadrotor begins
its flight at t = 6.5s and reaches its first waypoint at (0,-1)m
at t = 10s. This is noted by the slow decrease of the X and Y
command velocities. It then continues its flight towards point
(0,1)m. At t = 15s, a POC is detected by the magnitude of the
linear acceleration in X and Y. Since the value exceeded the set
threshold of 1 m/s2, the quadrotor entered a recovery mode
in which it sent a command velocity in the opposite direction
of the obstacle based on the detected collision acceleration
vector. At t = 19s, the quadrotor resumed normal flight.

Fig. 10. Quadrotor flight data related to Fig. 9(a)

Another POC was encountered at t = 23s, characterized by
the sharp increase in linear acceleration. Once again it entered
into the recovery mode flying away from the detected obstacle.
At t = 26s, the quadrotor returns to normal flight reaching
eventually its intended goal at t = 32s.

The other case studies presented in Fig. 9 show similar
behavior and demonstrate the flexibility of our approach when
the obstacle is positioned in different orientations.
C. Unprotected Quadrotor Case Study

1) Detection: The second case study tests were performed
on an unprotected Crazyflie quadrotor colliding with a pole.
The detection algorithm was run on the high-level controller
on the external computer at a rate of 100Hz. During the
evaluation process of the recorded data, the response time of
the algorithm was determined for each successful detection,

along with the overall false positive rate over the total amount
of flight time. For 16 experiments, the detection rate was 88%,
and the average response time was 0.026s± 0.007s at a 95%
confidence. The false positive rate during 8 minutes of flight
time was 0.48 false positives per minute.

The response time of the algorithm was sufficiently quick
and consistent to not significantly impact the time in which
the vehicle was required to recover before crashing into the
ground. In the two cases where the algorithm did not properly
detect the collision, slight adjustments to the trigger threshold
values for the axes would have adequately detected the event.
One observation that impacted the results of these tests was
the significant amount of noise that was present in the data
from the X and Y axes of the IMU as compared to the Z
dimension, which was far more stable. Upon further review
of the observed false positives, each erroneous result was
triggered by this noise present in the horizontal plane of
the IMU. As a result, the false positive rate could likely be
decreased by slightly raising the trigger thresholds for these
axes.

Through further review of several of the collisions, the value
of using the data from Z dimension along with X and Y
dimensions of the IMU was proven. In multiple cases, the
algorithm sensed a collision solely as a result of, or earlier
because of, the acceleration experienced in the Z dimension. In
the example collision shown in Fig. 11, the algorithm detected
the collision 0.02 seconds earlier because of the additional
dimension.

2) Recovery: Following the successful detection of a colli-
sion, the Crazyflie enters the stabilization phase of the recovery
plan and attempts to achieve a stable hover as shown in Fig. 12.
Fig. 13 provides an overhead view of a typical collision with
an overlay of the phases of recovery.

Table I shows a number of key factors that contribute to the
survivability of a collision using the recovery controller im-
plemented on the Crazyflie platform. Factors with significance
at the p < 0.05 level are highlighted in green, while those
significant at p < 0.2 are highlighted in yellow. Of particular
note is the strong correlation between low overshoot of the
initial recovery maneuver and the increased survivability rate
that is observed. This means better tuning of the non-linear
initial recovery controller may help improve the success rate
of the method, and also validates the theory that prioritizing
stability is key to the overall recovery method. Another factor
to note is the reliance on a low angular rate of the yaw dimen-
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Fig. 11. Diagnostic plots demonstrating the behavior of the detection
algorithm during a collision.

Fig. 12. Experiment for the recovery of the Crazyflie after colliding with a
pole, showing the stabilization and replanning phases away from the POC.

Fig. 13. Position of Crazyflie UAV and phases of the successful recovery
presented in Fig.12

sion during the collision as well as the maximum yaw angle
reached. One thing we noted during testing is that the low-
level controller on-board the Crazyflie has trouble handling
simultaneous maneuvers in both yaw and pitch or roll. This
means that collisions that reduced the yaw angle allowed the
controller to perform much better in stabilizing the roll and
pitch to obtain a stable hover. This is a problem that may be
overcome by re-tuning the low-level controller to ignore errors
in yaw dimension during the initial recovery phase, however
more testing is required to validate this assumption.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a framework for sensor-
based reactive collision detection, estimation, and recovery of
UAVs. Our approach focuses on portability and general UAV
properties to create effective obstacle location recognition, im-

pact recovery, and trajectory regeneration to allow completion
of an assigned mission in a cluttered environment.

In future work we propose to investigate additional re-
siliency and recovery techniques to allow recovery in cases
where the UAV sustains damages to the frame or motors.
Additionally we plan to continue investigating potential field
theory and trajectory generation techniques to better traverse
and remap cluttered environments.

TABLE I
ANALYSIS OF RECOVERABLE VS NON-RECOVERABLE COLLISIONS FOR

THE IMPLEMENTED CONTROLLER ON THE CRAZYFLIE.
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