
10320 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Meta-Learning-Based Proactive Online Planning for
UAVs Under Degraded Conditions

Esen Yel , Member, IEEE, Shijie Gao , Graduate Student Member, IEEE, and Nicola Bezzo , Member, IEEE

Abstract—Changes in model dynamics due to factors like ac-
tuator faults, platform aging, and unexpected disturbances can
challenge an autonomous robot during real-world operations af-
fecting its intended behavior and safety. Under such circumstances,
it becomes critical to improve tracking performance, predict future
states of the system, and replan to maintain safety and liveness con-
ditions. In this letter, we propose a meta-learning-based framework
to learn a model to predict the future system’s states and their
uncertainties under unforeseen and untrained conditions. Meta-
learning is considered for this problem thanks to its ability to easily
adapt to new tasks with a few data points gathered at runtime. We
use the predictions from the meta-learned model to detect unsafe
situations and proactively replan the system’s trajectory when an
unsafe situation is detected (e.g., a collision with an object). The
proposed framework is applied and validated with both simulations
and experiments on a faulty UAV performing an infrastructure
inspection mission, demonstrating safety improvements.

Index Terms—Planning under uncertainty, failure detection and
recovery, aerial systems.

I. INTRODUCTION

AUTONOMOUS mobile robots like aerial vehicles are
rapidly becoming an integral part of our daily lives thanks

to their widespread use in different applications from delivery
to inspection. When operating in the real-world, numerous un-
predictable challenges (e.g., component faults, external distur-
bances) can cause performance degradations, potentially leading
to unsafe behaviors like collisions. For example, unpredicted
wind fluctuations around buildings or bridges or motor failures
will put an aerial vehicle at risk of collision while conducting
inspection jobs. Since these uncertainties usually occur at run-
time without apriori knowledge, it becomes challenging to take
them into account during design time.

One way to cope with such unforeseen disturbances is to
learn the system model and adapt the controller of the robot
at runtime. However, given a well-developed robotic system, it

Manuscript received 24 February 2022; accepted 26 June 2022. Date of
publication 18 July 2022; date of current version 4 August 2022. This letter
was recommended for publication by Associate Editor S. Zhang and Editor
H. Kurniawati upon evaluation of the reviewers’ comments. This work was
supported by DARPA under Grant FA8750-18-C-0090. (Esen Yel and Shijie
Gao are co-first authors.) (Corresponding author: Shijie Gao.)

Esen Yel was with the Department of Engineering Systems and Environment,
University of Virginia, Charlottesville, VA 22904 USA. She is now with the
Department of Aeronautics and Astronautics, Stanford University, Stanford,
CA 94305 USA (e-mail: esenyel@virginia.edu).

Shijie Gao and Nicola Bezzo are with the Departments of Engineering
Systems and Environment and Electrical and Computer Engineering, Univer-
sity of Virginia, Charlottesville, VA 22904 USA (e-mail: sjgao@virginia.edu;
nbezzo@virginia.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3191792, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3191792

Fig. 1. Pictorial representation of a UAV experiencing a failure at runtime
leading to potential collision.

is often the case that the controller is either hard to adapt or is not
accessible by the user. Thus, one of the best options is to act on
the planner which is by design available to change. By correcting
the reference planned trajectory, it is often possible to make a
robot with the original controller follow the original desired
behavior. As we demonstrated in [1], this type of approach
is effective in improving the performance of a robot dealing
with an unforeseen component fault. However, we observe that
depending on the fault, the tuning of the adapted planner, and the
robot’s physical limits, an undesired behavior may still occur,
like a deviation from the desired path, possibly leading to unsafe
situations.

With these premises, in this work, we introduce a novel
safety monitoring technique to predict the future states of an
autonomous robot under actuator noises and previously un-
foreseen actuator failures. Our framework predicts the future
states and state uncertainties for the faulty robot and utilizes
these predictions to monitor if the system will violate safety
constraints (e.g., a collision with an obstacle). When an unsafe
situation is detected, a safe trajectory is then replanned using
a sampling-based approach for waypoint selection. Fig. 1 pic-
torially shows the problem space of this work in which a UAV
is tasked to inspect a power plant. Due to unexpected failures,
the UAV will deviate and collide with the plant. Our technique
proactively monitors and predicts the regions the system may
reach over a future horizon and will update and replan the
trajectory when these regions intersect with obstacles.

The contribution of this work is four-fold: 1) we develop a
technique to predict the states and regions that a robot under an
unknown failure is going to reach within a time horizon; 2) we
introduce a runtime monitoring and validation approach to up-
date the prediction models at runtime to increase the prediction
accuracy; 3) we propose a replanning approach to prevent unsafe
situations at runtime, and 4) we validate with both simulations
and experiments on quadrotor UAVs inspection missions.

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0463-3601
https://orcid.org/0000-0003-4717-4094
https://orcid.org/0000-0001-6627-5048
mailto:esenyel@virginia.edu
mailto:sjgao@virginia.edu
mailto:nbezzo@virginia.edu
https://doi.org/10.1109/LRA.2022.3191792

YEL et al.: META-LEARNING-BASED PROACTIVE ONLINE PLANNING FOR UAVS UNDER DEGRADED CONDITIONS 10321

The rest of the letter is organized as follows: related work
about failure rejection and meta-learning is presented in Sec-
tion II. We introduce the notation and assumptions of the pro-
posed framework in Section III. The problem is then formally
defined in Section IV, and we present our proposed meta-
learning-based future state and uncertainty prediction approach
in Section V. We validate our technique with simulations and
experiments in Sections VI and finally draw conclusions and
discuss future work in Section VII.

II. RELATED WORK

For consistent performance under faulty behaviors, control
techniques have been widely utilized to adapt the systems’
control inputs according to the changes in the system dynamics
and to alleviate the effects of faults. For example, for quadrotors
with the complete loss of one or multiple actuators, specific
controllers can be designed according to the failure to maintain
stability and performance [2]–[5]. However, these techniques
require explicit knowledge of the specific failures and how these
changes affect the system’s dynamical model to design resilient
controllers. When such knowledge is not available, fault identifi-
cation or adaptive control techniques can be leveraged. In [6], an
Extended Kalman Filter (EKF)-based fault identification is used
to decide if there are one or multiple rotor failures, and a control
allocation is updated based on the failure using a nonlinear
Model Predictive Control (MPC). In [7], a self-reconfiguration
technique allows the system to decide on its configuration
based on the actuator failure and its desired trajectory. Another
well-known adaptive control technique called Model Reference
Adaptive Control (MRAC) adapts the control variables of the
system based on the difference between the observations and
reference model output to improve tracking for systems with
uncertainties and it has been used to compensate for failures [8],
[9]. Recently, machine learning techniques such as Gaussian
Processes (GP) [10] and deep neural networks (DNNs) [11] have
been leveraged for the adaptive elements in MRAC frameworks.
GP-based approaches have also been used to model the effects
of changes in the system model (e.g., due to unknown payload
mass) and to provide safe plans [12]. Robustness against faulty
systems has also been achieved by using resilient distributed
consensus [13], [14], and topology control [15] within the con-
text of multi-agent navigation.

In addition to control approaches, machine learning tech-
niques have also been widely used to improve the performance of
UAVs under actuator faults or disturbances. In [16], the authors
use MPC with active learning to learn the robot’s new model un-
der failure and provide necessary inputs. Reinforcement Learn-
ing (RL) techniques are also utilized to adjust the actuator
control commands to compensate for component faults [17],
[18]. Meta-learning approaches enable systems to speed up their
learning process for new tasks with a small number of training
samples from new tasks. This property makes meta-learning
suitable for learning the models of uncertain systems at runtime
for safe planning [19]. One of such techniques–Model-Agnostic
Meta-Learning (MAML)–trains the model parameters explicitly
to make them easy and fast to fine-tune for a new task [20].
MAML has been leveraged for fault-tolerant operations using
MPC and RL in [21], [22]. An algorithm called Fast Adapta-
tion through Meta-Learning Embeddings (FAMLE) is proposed
in [23] that meta-learns multiple priors as opposed to a single
prior in MAML, and picks the most likely prior to improve online

learning efficiency. [24] introduces a concept of meta-active
learning in which a Q-function is learned via meta-learning and
used to find optimal actions to maximize the probability of stay-
ing in the safe region and promote information gain for systems
with altered dynamics. In [25], meta-learning is utilized to model
the system dynamics under external forces to be used with an
adaptive control scheme to improve the tracking performance.
All of these approaches assume that the user is given direct
access to the controller or the actuator inputs. However, this
assumption may not hold, especially when off-the-shelf robotic
systems are used.

As mentioned in Section I, in our previous work [1] we have
proposed a meta-learning-based approach to recover a faulty
UAV undergoing an unforeseen fault, updating the reference
trajectory at runtime without accessing the controller or con-
trol inputs. In this letter, we extend this work and the use of
meta-learning to solve a reachability analysis problem to deal
with situations in which even after replanning, the system may
still deviate from the desired behavior possibly leading to unsafe
states. In particular, with our proposed framework, future states
and associated uncertainties for a faulty autonomous system
considering future corrections (e.g., by leveraging our reference
update method in [1]) are predicted at runtime without the need
of retraining a learning component. These predictions are then
utilized to monitor if the reference update method is insufficient
to make the system follow its desired trajectory and remain safe,
triggering a trajectory replanning procedure.

III. PRELIMINARIES

In this work, we assume that once a robot is deployed to
perform an operation, we do not have access to its controller
or control inputs and we only have access to the high-level
planner and reference trajectory generator. This consideration
is made in order to increase realism since most robotic systems
do not allow manipulations of the controller once a robot is
deployed but instead, it is possible to change its goals locations
and trajectory waypoints. We assume that the system is already
applying corrective counter-measures both at design time and at
runtime to alleviate the effects of faults and to follow a desired
trajectory closely. However, under some disturbances/failures,
its behavior may still become erratic as the corrective actions
may not be able to compensate and bring the system back on its
desired path.

A. Notations

In this letter we use x(k) to represent the state of the
system at time k. p(k) and v(k) represent the position and
velocity of the system respectively. The symbol x̃ is used
to represent the predicted state, and the symbol x̄ is used
to represent the mean of sampled states. The notation x(k :
kN) represents an array of values from time k to kN : x(k :
kN) = [x(k), x(k + 1), . . . , x(kN)]T where kN > k. The nota-
tion x(k : δN : kN) represents an array of values from time k to
kN with δN ∈ Z+ increments: x(k : δN : kN) = [x(k), x(k +
δN), x(k + 2δN), . . . , x(kN)]T where kN > k and δN > 1.

IV. PROBLEM FORMULATION

The goal of this work is to design a technique that predicts
the future states of a system under an unseen fault at runtime,
uses these predictions to detect unsafe situations, and proactively

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

10322 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 2. Meta-learning-based future state prediction and replanning framework for systems under unknown faults.

replans to improve safety. The system might already be applying
corrective actions to compensate for the experienced faults, how-
ever, these corrective measures may not be enough to prevent
collisions. Formally, we define these problems as follows:

Problem 1: Future State Prediction under Failure: An au-
tonomous system with a nominal dynamical model f(x,u) as a
function of its states x and controller inputs u has an objective
of following a predefined desired trajectory xτ . Under actuator
faults and noises, the system’s model changes to x(k + 1) =
f ′(x(k), ũ(k)), where f ′ is unknown. The system has noisy
inputs ũ(k)) = u(k) + η(k) which create state uncertainties,
making the exact state prediction of the system challenging.
With these premises, our goal is to design a predictor to map
the future state predictions (x̃) and state uncertainty predic-
tions (ζ̃) as a function (h̃) of the history of states and refer-
ence trajectory: [x̃(k : k +H), ζ̃(k : k +H)] = h̃(x(k − T :
k − 1),xτ). H is the state prediction horizon and T is the size
of the data history used to make predictions.

Problem 2: Safe Replanning: Design an online policy to
monitor the safety of the future states of the system and to replan
the trajectory when an unsafe situation is detected to ensure that
the following safety condition will be satisfied by the future
predicted states:

Rp|k+Hk ∩O = ∅ (1)

whereO is the set of obstacle positions andRp|k+Hk is the union
of future position sets that the system is predicted to reach over
a time horizon H with time increments of δH :

Rp|k+Hk = Rp(k) ∪Rp(k + δH) · · · ∪Rp(k +H) (2)

The set of positions that the system is predicted to reach at time
k is computed as follows:

Rp(k) = ∪
{
p s.t. ‖p− p̃(k)‖ ≤ ζ̃p(k)

}
(3)

where p̃ is the predicted position and ζ̃p is the predicted position
uncertainty.

V. META-LEARNING-BASED PREDICTIONS AND PROACTIVE

REPLANNING

Our framework consists of offline and online stages as de-
picted in Fig. 2. During offline and online stages, the system
applies corrective measures to compensate for the faults. During

the offline stage, the robot under various faults follows a set of
trajectories. A meta-network is trained offline to predict future
states and their uncertainties based on the collected training data.
At runtime, the robot experiences a new, unforeseen fault. With a
few data collected at runtime, the meta-network is fine-tuned to
make predictions over a finite horizon about the future states
and state uncertainties of the new faulty system considering
corrective countermeasures. These predictions are used within
a runtime replanning approach to find a safe trajectory if the
original desired trajectory is deemed unsafe with the fault that
the system is experiencing. The next section will explain how
the offline training for state and uncertainty predictions is per-
formed.

A. Offline Training for State and Uncertainty Predictions

To train a model offline for state and uncertainty predictions,
we first collect training data using a UAV with various faults
following a rich set of trajectories. Then, we use meta-learning
to train a network which is easy to fine-tune at runtime using a
small number of data [20].

1) Data Collection: During the offline stage, a dataset is
created using the data collected from a UAV with actuator
fault from a discrete fault set F while it is following different
trajectories applying fault-tolerant corrective measures.

Specifically, we consider a system with faulty dynamics and
actuator noise modeled as follows:

x(k + 1) = f ′ (x(k),u(k) + η(k)) (4)

The actuator noiseη(k) ∼ N (μη,ση) is sampled from a normal
distribution with mean μη and standard deviation ση . Each
trajectory is run N times and for each sampled run, the mean
of the actuator noise is sampled from a normal distribution to
capture the behavior of the system under various uncertainties:
μη ∼ N (μ̄,σμ).

For each trajectory τ ⊂ T , we compute the mean and standard
deviation of theN sampled paths for each fault Fi ⊂ F and for
each discrete sample times k ∈ [0, Tτ].

x̄i(k) =

∑N
j=1 x

j
i (k)

N
,σi(k) =

√∑N
j=1 |x

j
i (k)− x̄i(k)|2
N − 1

∀k ∈ [0, Tτ], ∀i ∈ {1, . . . , |F|} (5)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

YEL et al.: META-LEARNING-BASED PROACTIVE ONLINE PLANNING FOR UAVS UNDER DEGRADED CONDITIONS 10323

Fig. 3. Sample desired trajectories with two different faulty systems.

In Fig. 3 we show two different sample desired trajectories
(τ1 and τ2) that are followed by a UAV under two differ-
ent faults applying the reference update procedure described
in [1] to reduce their tracking error. The first faulty UAV has
reduced thrust in one actuator: F1 → T ′1 = T1−0.25N and the
second faulty system has more degradation on the same actuator:
F2 → T ′1 = T1−0.5N. Roll and pitch angles of both systems are
limited to |φ| ≤ π

18 , |θ| ≤
π
18 respectively. Each trajectory is run

N = 10 times with different actuator noise sampled as explained
above. Blue curves in Fig. 3(a) show these N sampled paths for
the first fault and the magenta curve in the middle shows the
mean of these samples (x̄1). Dashed magenta curves show the
uncertainty around the mean of the samples with±3σi. Fig. 3(b)
shows the paths of the same faulty UAVs following another
training trajectory (τ2). During training, we create 100 training
trajectories using minimum-jerk trajectory generation [26] with
different final positions, initial and final velocities. Determining
the training data size for training an accurate meta-model is
an open problem and beyond the scope of this work. This
framework leaves the choice of training data size to the user.
However, as for most learning components, it benefits from
training data that covers a wide variety of faults.

2) Meta-Network Training: The purpose of meta-learning is
to train an easily adaptable model to predict the future positions
and position uncertainties of a faulty system. We denote this
learning model as h which takes the history of the system’s
observed states, history of the desired states and future desired
states as inputs and returns the future states and state uncertain-
ties as an output. A training input χih and a training output γih
are constructed as follows:

χih(k) =

⎡
⎣ ξix(k)
ξiτ (k)
ξih(k)

⎤
⎦ γih(k) =

[
ξiγ(k)
ζiγ(k)

]
(6)

where ξix(k), ξ
i
τ (k) and ξih(k) represents the vectors related to

the history of the system’s states, history of the desired states
and future desired states respectively and ξiγ(k) and ζiγ(k)
are the vectors related to the future state and state uncertainty
predictions respectively. For the UAV application considered in

this letter, the input vectors for a quadrotor with the faultFi ⊂ F
are constructed as follows:

ξix(k) =

⎡
⎢⎢⎣
x̄i(k − T + 1 : k)− x̄i(k − T)�1
ȳi(k − T + 1 : k)− ȳi(k − T)�1

v̄xi (k − T + 1 : k)
v̄yi (k − T + 1 : k)

⎤
⎥⎥⎦

ξiτ (k) =

⎡
⎢⎢⎣
xτ (k − T + 1 : k)− x̄i(k − T)�1
yτ (k − T + 1 : k)− ȳi(k − T)�1

vx,τ (k − T + 1 : k)
vy,τ (k − T + 1 : k)

⎤
⎥⎥⎦

ξih(k) =

⎡
⎢⎢⎣
xτ (k + δH : δH : k +H)− x̄i(k − T)�1
yτ (k + δH : δH : k +H)− ȳi(k − T)�1

vx,τ (k + δH : δH : k +H)
vy,τ (k + δH : δH : k +H)

⎤
⎥⎥⎦

∀τ ⊂ T , ∀k ∈ {1, . . . , T (τ)} (7)

where p̄i(k) = [x̄i(k), ȳi(k)] and v̄i(k) = [v̄xi (k), v̄
y
i (k)] are

the position and velocity components of the mean state x̄i(k)
respectively. For this application, we use the positions and ve-
locities in x− y plane as part of the observed and desired states,
however, it should be noted that, depending on the application,
higher order states such as acceleration or jerk values could also
be added into the network input. Similarly, the output vectors
are constructed as follows:

ξiγ(k) =

[
x̄i(k + δH : δH : k +H)− x̄i(k − T)�1
ȳi(k + δH : δH : k +H)− ȳi(k − T)�1

]

ζiγ(k) =

[
3 ·max(σxi (k : k +H))
3 ·max(σyi (k : k +H))

]
(8)

where σxi (k) and σyi (k) are the x and y position components of
the standard deviation σi(k) respectively.

The dataset for meta-learning training DHi for fault Fi con-
tains the training input matrix Xi

h and output matrix Y i
h, with

the columns χih and γih respectively. The training dataset for
meta-learning contains the dataset for each fault: DHi ⊂ DH .

The purpose of meta-learning is to learn a model represented
by a parameterized function hφ that maps the model input to the
output. We use MAML [20] as a meta-learning algorithm to train
the network. During the offline training, the model parameters
vector φ are meta-optimized according to 1 in [20]:

φ←− φ− β∇φ
∑
Fi⊂F

LFi
(hφ−α∇φLFi (hφ)) (9)

where α is the learning step size, β is the meta step size, and
Fi ⊂ F indicates the sample batch of faults among the training
data. For more details, we refer readers to [20].

This meta-optimization allows the parameters to be quickly
fine-tuned with a few data at runtime. The loss function used
during this training is given as follows:

LFi
(hψ) =

∑
χi

h,γ
i
h∈DH

i

‖hψ
(
χih

)
− γih‖22 (10)

where χih and γih are given in (6).

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

10324 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

B. Online Meta-Network Update

At runtime, the UAV may experience a new fault which is not
included in the training set and may apply the same corrective
measures as during the training stage. While the system moves
under this new fault, we collect Kp consecutive data from its
state sensors to update the offline meta-trained model for future
state predictions. The inputs and outputs of the online learning
data set are constructed in the same way as in (6) and (7):

χ∗h(k) =

[
ξ∗x(k)
ξ∗τ (k)
ξ∗h(k)

]
γ∗h(k) =

[
ξ∗γ(k)
ζ∗γ(k)

]
(11)

where:

ξ∗x(k) =

⎡
⎢⎢⎣
x∗(k − T + 1 : k)− x∗(k − T)�1
y∗(k − T + 1 : k)− y∗(k − T)�1

v∗x(k − T + 1 : k)
v∗y(k − T + 1 : k)

⎤
⎥⎥⎦

ξiτ (k) =

⎡
⎢⎢⎣
x∗τ (k − T + 1 : k)− x∗(k − T)�1
y∗τ (k − T + 1 : k)− y∗(k − T)�1

v∗x,τ (k − T + 1 : k)
v∗y,τ (k − T + 1 : k)

⎤
⎥⎥⎦

ξih(k) =

⎡
⎢⎢⎣
x∗τ (k + δH : δH : k +H)− x∗(k − T)�1
y∗τ (k + δH : δH : k +H)− y∗(k − T)�1

v∗x,τ (k + δH : δH : k +H)
v∗y,τ (k + δH : δH : k +H)

⎤
⎥⎥⎦ (12)

for k ∈ {T + 1, . . . , T +Kp} with p∗ = [x∗, y∗] and v∗ =
[v∗x, v

∗
x] the position and velocity of the UAV with an unknown

fault at runtime. p∗τ = [x∗τ , y
∗
τ] and v∗τ = [v∗x,τ , v

∗
y,τ] are desired

trajectory positions and velocities respectively. The output of the
online learning dataset consists of the following vectors:

ξiγ(k) =

[
x∗(k + δH : δH : k +H)− x∗(k − T)�1
y∗(k + δH : δH : k +H)− y∗(k − T)�1

]

ζiγ(k) = [σx σy]
T (13)

where σx and σy are assigned uncertainties in x and y directions
respectively and they are initially set to a value larger than the
mean of the observed uncertainties during training. By using the
data collected at runtime, the meta-learned model parameters φ
are updated to φ∗ using only a few stochastic gradient descent
updates. The updated modelhφ∗ is then used to make predictions
for the future states of the system for the same horizon consid-
ered in training. These predictions are used to replan trajectories
if unsafe situations are detected, as explained in the next section.

1) Runtime Validation: After the initial meta-network update
at runtime, the runtime inputs are compared to the training inputs
to assess if a further meta-network update is necessary or not.
The distance between the runtime input and training inputs with
training faults is calculated as:

diF (k) = min
χi

h∈col(Xi
h)
‖χ∗h(k)− χih‖ ∀i ∈ {1, . . . , |F|}

∀k ∈ {T +Kp, . . . , T (τ)} (14)

If the minimum distance between the observed test input and
the training inputs is larger than a given threshold, the system

Algorithm 1: Trajectory Replanning.
1: τ ← Initialize the desired trajectory
2: s∗(k + t)← Assess safety based on (19)
3: while s∗(k + t) = 0do
4: ds ∼ U[0,d̄s] ← Sample update distance
5: ψs ∼ U[−π,π] ← Sample update direction
6: pw = pτ (k + t) + ds[cos(ψ); sin(ψ)]← Sample a

waypoint
7: τ ← Replan trajectory with pw
8: R̃p(k)← Predict the reachable region with τ
9: s∗(k + t)← Assess the safety of τ based on (19)

10: end while
11: return τ

re-tunes its meta-trained network:

sH(k) = 1 if min
i∈{1,...,|F|}

(
diF (k)

)
> λH (15)

where sH is a binary variable that enables re-updating the meta-
trained network at runtime using the last Kp runtime training
inputs and λH is a user-defined threshold.

We also constantly monitor the observed state to check if it is
outside of the predicted reachable region. If so, the network is
re-tuned:

sH(k) = 1 if p(k) �⊂ R̃p(k) (16)

where R̃p(k) is a region where the system is predicted to reach
at time k:

R̃p(k) = ∪{p s.t. ‖p− p̃(k)‖ ≤ ζ̃(k)} (17)

C. Runtime Replanning for Safety

After updating the meta-trained network, the future states and
state uncertainties of the system are predicted using the fine-
tuned network:⎡
⎢⎣
x̃(k + δH : δH : k +H)
ỹ(k + δH : δH : k +H)
σ̃x(k + δH : δH : k +H)
σ̃y(k + δH : δH : k +H)

⎤
⎥⎦= h∗φ (χ

∗
h(k)) +

⎡
⎢⎢⎣
x∗(k − T)�1
y∗(k − T)�1

0
0

⎤
⎥⎥⎦

∀k ≥ T +Kp (18)

At runtime, the predicted set based on the updated meta-
trained model are used to proactively detect unsafe situations.
Given an environment with a set of static obstaclesO, the regions
that the system is predicted to reach, which are computed as in
(17), are checked for collision:

s∗(k + t) =

{
0 if R̃p(k + t) ∩O �= ∅
1 otherwise

∀t ∈ {δH , 2δH , . . . , H} (19)

At time k, if it is detected that s∗(k + t) = 0 (i.e., reachable
regions intersect with obstacles for t ∈ {δH , 2δH , . . . , H}), the
trajectory is replanned. To this end, here we use a sampling-
based replanning method in which a waypoint around the orig-
inal unsafe desired trajectory point is generated and tested for
safety until a safe waypoint is found as outlined in Algorithm 1.

The replanning algorithm is applied until the desired trajec-
tory reaches the goal location. It should be noted that as the main

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

YEL et al.: META-LEARNING-BASED PROACTIVE ONLINE PLANNING FOR UAVS UNDER DEGRADED CONDITIONS 10325

TABLE I
FAULT TYPES USED DURING SIMULATIONS

objective of this work is not the replanning algorithm itself, a
user can consider a different replanning approach based on the
application.

VI. SIMULATIONS AND EXPERIMENTS

The proposed meta-learning-based predictive and proactive
replanning framework was validated on a faulty UAV infras-
tructure inspection task. For the following simulations and ex-
periments, we consider a quadrotor UAV that is undergoing a
faulty behavior and is equipped with a fault-tolerant corrective
method which may or may not be well-tuned to recover the
system against all possible failures/disturbances that can occur at
runtime. Thus, the vehicle can deviate from its desired trajectory
when facing a new fault beyond the corrective method’s capa-
bilities. In our simulations and experiments, we chose to use our
meta-learning-based trajectory update method presented in [1]
as a fault-tolerant corrective method. This technique has shown
trajectory tracking improvements under degraded conditions.
The corrective method is purposely poorly tuned to show not
only the issue more clearly but also the effectiveness of the
proposed approach. It is worth noting that we choose to use this
method because it does not require access to the controller or
controller inputs, however, our predictive and proactive planning
framework can be used with other corrective/adaptive techniques
as well (e.g., robust and adaptive controllers).

A. Simulations

In these simulations, the quadrotor is modeled with a
12-dimensional state vector [26] and the fault is modeled as
a thrust change on randomly selected motors. Specifically, the
fault is simulated by both reducing the thrust on one of the
motors and increasing the thrust on the opposite motor of the
quadrotor. The details of the faults used during training and
testing are shown in Table I. Note that the faults caused by
motors 1 and 3 are amplified effects of the fault on the single
motor. Considering the quadrotors are symmetric by nature,
faults presented on 2 or 4 can be treated similarly. In addition to
the faults, we also consider a system with limited roll and pitch
angles: |φ| ≤ τφ, |θ| ≤ τθ in order to accentuate the issue and
for ease of demonstration. For training, we used two different
angle limits: τφ = τθ ∈ { π18 ,

π
12} and for testing we considered

a different angle limit: τφ = τθ =
π
16 .

During the offline stage of collecting training data, the UAV
is tasked to follow different minimum-jerk trajectories [26]
under different faults. Specifically, the training trajectories are
shaped as trapezoidal paths of different lengths and angles. The
collected data are used for meta-training the reference trajectory
neural network and the state and uncertainty prediction neural
network.

Fig. 4. UAV path under a test fault without the meta-learning prediction and
replanning approach.

During training, the control loop runs at 40 Hz. We use T =
10 past data to predict the future states, and we set the future
horizon for the predictions H = 50 steps which is equivalent
to 1.25 s ahead. The state and the uncertainty predictions are
given at five future times spaced δh = 10 time steps apart. The
prediction network contains five hidden layers with 100 nodes
and is meta-trained by using a Tensorflow Keras implementation
of MAML [20].

During the online testing stage, the UAV is tasked to follow
a desired path to inspect a structure while undergoing an unex-
pected failure. In Fig. 4 we show a baseline case that will be
used to compare our framework. Without correction, the UAV
collides with the black obstacle (cyan-colored baseline path)
while following the desired trajectory (red-colored line). In the
same figure, we show also the case in which the UAV only
applies corrective reference updates according to [1] (blue line)
while trying to follow the desired path without the proposed
predictive and proactive replanning technique. The UAV adapts
the trained model to deal with the new fault by using prior data
obtained during the flight and then uses the adapted model to
update the reference trajectory (magenta line in the figure). It
should be noted that, as a proof of concept, we used a poorly
tuned correction which leads to collisions, to demonstrate the
prediction and compensation capabilities of our approach next.

Given the same simulation setup, we validate our prediction
and replanning technique while the UAV is applying the same
reference trajectory update in [1]. Fig. 5 shows that the UAV pre-
dicts a potential collision within the predicting horizon (1.25 s)
and replans its desired path to avoid the obstacle. In the zoomed-
in window, we show the instance in which the UAV predicts
and detects the collision and keeps predicting and checking the
safety of the replanned paths. The proposed replanned desired
paths and the predictions for checking the safety are color coded.
Given the first proposed replan trajectory which is shown as the
dashed brown line, the framework predicts the future positions
as well as the uncertainties of the vehicle which are indicated
as a series of brown rectangles in the zoomed-in window. The
first proposed replan is considered as unsafe since the predicted
positions collide with the obstacle and thus it is abandoned.
Another replanned trajectory orange-colored is considered but
yet deemed unsafe. Finally, a safe replanned desired trajectory
(green dashed line) is validated by the predictions of the frame-
work (green rectangles) and the vehicle can overcome the unsafe
situation. As the goal of our proposed framework is to recover
the faulty vehicle from the unsafe operations, the path replanning
prioritize getting the UAV safely to the desired destination over
staying close to the initial desired path.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

10326 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Fig. 5. UAV path under a test fault with the proposed meta-learning-based
prediction and replanning approach.

B. Experiments

The proposed meta-learning-based prediction and proactive
re-planning approach was also validated with experiments by
using an Asctec Hummingbird quadrotor UAV inside a con-
trolled laboratory space. Similar to the simulations, the UAV
uses a baseline PID controller which is designed for the nominal
quadrotor (without a fault) to control its position and attitude.
To create the faulty behavior on motors 1 and 3, a fault is
injected into the system by adding a bias to the commanded pitch
angle before it is fed to the attitude controller. A poorly tuned
meta-learning based reference trajectory update approach [1] is
used to compensate for the deviation caused by the fault during
tracking. The experiments are implemented in ROS and a Vicon
motion capture system is used to monitor and track the state of
the UAV.

To train a model for future state prediction, we collected
training data for the UAV following different trajectories con-
sidering various speeds and angled paths. We ran each of the
training trajectories with 5 different faults by directly adding bi-
ases b ∈ {−0.06,−0.09,−0.12,−0.15,−0.18}rad to the pitch
command and three runs for each case. As the magnitude of
the faults increases, the quadrotor deviates more toward the
positive y-direction. A meta-learning model was trained with the
collected data to predict the states as well as the uncertainty of the
vehicle at different time frames {+0.4,+0.8,+1.2,+1.6,+2}s
in the future. The same architecture of the neural networks in
the simulation was used for the experiments.

During the online stage, the vehicle was tasked to follow a
desired trajectory at a maximum velocity of 3m/s while a bias
b = 0.13rad – which is different from the ones in the training set
– was applied to the vehicle. While the UAV was tracking the
desired path, it used the offline meta-trained model to predict
the positions and uncertainties at 5 different time frames in the
future with the maximum predicting horizon of 2 s. Fig. 6 shows
the results of the UAV taking a desired straight path from the start
point to the destination. The predictions are shown as the orange
bounding boxes in the figures. Any overlapping area between
the predicted boxes and the obstacles is considered a potential
collision and thus triggers the re-planning procedure.

Fig. 6(a) and 6(b) show the results from the first experiment in
which the re-planning procedure was disabled. To demonstrate
the correctness of the prediction and show where the UAV
would have reached without re-planning, avoiding damaging the
vehicle, we set its height above the obstacle. As a result, the UAV
detected a collision at time 7.39 s when it was 0.98m away from

Fig. 6. The UAV with an unknown fault is tasked to fly from the start point
to a destination in 3 different cases. Case 1 (a) and (b) shows the UAV detects a
collision while replanning is disabled. Case 2 (c) and (d) shows the UAV detects
a potential collision and avoids the obstacle by replanning. Case 3 (e) and (f)
shows the obstacle does not threaten the safety of the UAV and no replanning is
thus triggered.

the obstacle and flew through the obstacle because replanning
was disabled in this test. In the second set of experiments
shown in Fig. 6(c) and 6(d), we enabled the replanning module.
While the UAV is flying, at time 7.84 s, the predictions by the
meta-learned model indicated a collision risk, which resulted
in triggering the replanning behavior. The UAV randomly sam-
pled a waypoint at (−0.41, 0.8)m and generated a new desired
trajectory to drive around the obstacle. Given the new desired
trajectory, the UAV confirmed that the new path is safe within the
prediction horizon based on the meta-trained model predictions.
We note that as Experiment 1 and Experiment 2 are two separate
experiment instances, the UAV detects the collision at different
times. In Experiment 2, it took less than 0.05 s to find a safe
solution after detecting the collision, which demonstrates that
our approach was fast enough to be performed at runtime. It is
also noteworthy that how to pick the waypoints for re-planning
is not the contribution of this work; we rather focus on predicting
the states of the vehicle with an unknown fault.

In the third experiment, the obstacle was set at a different po-
sition than the previous two experiments. As shown in Fig. 6(e)
and 6(f), the UAV constantly monitored the predictions and did
not need to perform re-planning since no potential collision was
detected.

We also tested our approach in scenarios with more ob-
stacles. As shown in Fig. 7, we sampled some examples of
the predictions while the UAV navigates through the cluttered
environment. At times 7.20 s and 13.51 s the UAV predicted
and detected potential collisions. We also showed two other
predictions of future states and uncertainties at times 9.18 s
and 14.73 s to further demonstrate the output of the proposed
framework. Due to the space constraints of our lab, we did not
perform tests with more obstacles and failures; however, we
believe that the presented results are representative enough to
demonstrate the effectiveness of the proposed approach.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

YEL et al.: META-LEARNING-BASED PROACTIVE ONLINE PLANNING FOR UAVS UNDER DEGRADED CONDITIONS 10327

Fig. 7. The UAV detects the collisions and avoids the obstacles multiple times.
The legend for this figure is the same of Fig. 6(a).

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a framework to predict future
reachable states and their uncertainties of a system with an
unknown and unforeseen fault that causes degraded behavior
like deviations and possible collisions. To this end we have
designed a method that leverages meta-learning to train an
easily adaptable model at runtime to make predictions about
the future states and state uncertainties of the faulty system. At
runtime, we use these predictions to detect potential collisions in
the environment, and proactively replan the trajectory to avoid
the predicted collisions. We validated the applicability of our
approach with both simulations and experiments on a quadrotor
UAV with an actuator fault for infrastructure inspection case
studies.

In our current formulation, we are only considering static
faults and static obstacles, but we plan to extend the proposed
technique to consider time-varying faults and mobile objects like
other actors in the environment. Additionally, we are exploring
ways to incorporate different replanning techniques to provide
guarantees about finding a safe planning solution within a fixed
time duration.

REFERENCES

[1] E. Yel and N. Bezzo, “A meta-learning-based trajectory tracking frame-
work for uavs under degraded conditions,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2021, pp. 6884–6890.

[2] M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter
despite the complete loss of one, two, or three propellers,” in Proc. IEEE
Int. Conf. Robot. Automat., 2014, pp. 45–52.

[3] S. Sun, L. Sijbers, X. Wang, and C. de Visser, “High-speed flight of
quadrotor despite loss of single rotor,” IEEE Robot. Automat. Lett., vol. 3,
no. 4, pp. 3201–3207, Oct. 2018.

[4] S. Sun, X. Wang, Q. Chu, and C. de Visser, “Incremental nonlinear fault-
tolerant control of a quadrotor with complete loss of two opposing rotors,”
IEEE Trans. Robot., vol. 37, no. 1, pp. 116–130, Feb. 2021.

[5] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for
a quadrotor uav with a total rotor failure,” Aerosp. Sci. Technol., vol. 98,
2020, Art. no. 105716.

[6] D. Tzoumanikas, Q. Yan, and S. Leutenegger, “Nonlinear mpc with
motor failure identification and recovery for safe and aggressive mul-
ticopter flight,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 8538–8544.

[7] N. Gandhi, D. Saldaña, V. Kumar, and L. T. X. Phan, “Self-reconfiguration
in response to faults in modular aerial systems,” IEEE Robot. Automat.
Lett., vol. 5, no. 2, pp. 2522–2529, Apr. 2020.

[8] Y. Liu, G. Tao, and S. M. Joshi, “Modeling and model reference adaptive
control of aircraft with asymmetric damage,” J. Guid., Control, Dyn.,
vol. 33, no. 5, pp. 1500–1517, 2010. [Online]. Available: https://doi.org/
10.2514/1.47996

[9] Y. Liu and G. Tao, “Multivariable mrac for aircraft with abrupt damages,”
in Proc. IEEE Amer. Control Conf., 2008, pp. 2981–2986.

[10] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “A bayesian
nonparametric approach to adaptive control using Gaussian processes,” in
Proc. IEEE Conf. Decis. Control, 2013, pp. 874–879.

[11] G. Joshi and G. Chowdhary, “Deep model reference adaptive control,” in
Proc. IEEE Conf. Decis. Control, 2019, pp. 4601–4608.

[12] E. Yel and N. Bezzo, “Gp-based runtime planning, learning, and recov-
ery for safe UAV operations under unforeseen disturbances,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 2173–2180.

[13] K. Saulnier, D. Saldaña, A. Prorok, G. J. Pappas, and V. Kumar, “Resilient
flocking for mobile robot teams,” IEEE Robot. Automat. Lett., vol. 2, no. 2,
pp. 1039–1046, Apr. 2017.

[14] H. Zhang and S. Sundaram, “Robustness of information diffusion algo-
rithms to locally bounded adversaries,” in Proc. IEEE Amer. Control Conf.,
2012, pp. 5855–5861.

[15] F. Zhang and W. Chen, “Self-healing for mobile robot networks with
motion synchronization,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2007, pp. 3107–3112.

[16] M. L. Schrum and M. C. Gombolay, “When your robot breaks: Active
learning during plant failure,” IEEE Robot. Automat. Lett., vol. 5, no. 2,
pp. 438–445, Apr. 2020.

[17] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting UAVs
with reinforcement learning-assisted flight control under cyber-physical
attacks,” in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 7358–7364.

[18] S. R. Ahmadzadeh, P. Kormushev, and D. G. Caldwell, “Multi-objective
reinforcement learning for AUV thruster failure recovery,” in Proc.
IEEE Symp. Adaptive Dyn. Program. Reinforcement Learn., 2014,
pp. 1–8.

[19] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone, “Safe active
dynamics learning and control: A sequential exploration–exploitation
framework,” IEEE Trans. Robot., pp. 1–20, 2022.

[20] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 1126–1135.

[21] A. Nagabandi et al., “Learning to adapt in dynamic, real-world en-
vironments through meta-reinforcement learning,” in Proc. Int. Conf.
Learn. Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=HyztsoC5Y7

[22] I. Ahmed, M. Quinones-Grueiro, and G. Biswas, “Complementary meta-
reinforcement learning for fault-adaptive control,” in Proc. Annu. Conf.
PHM Soc., vol. 12, no. 1, 2020, p. 8.

[23] R. Kaushik, T. Anne, and J.-B. Mouret, “Fast online adaptation in robotics
through meta-learning embeddings of simulated priors,” in Proc. IEEE/
RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5269–5276.

[24] M. L. Schrum, M. Connolly, E. Cole, M. Ghetiya, R. Gross, and M. C.
Gombolay, “Meta-active learning in probabilistically-safe optimization,”
2020, arXiv:2007.03742.

[25] S.M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-control-
oriented meta-learning for nonlinear systems,” in Proc. Robot. Sci. Syst.,
Jul. 2021.

[26] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Automat., 2011,
pp. 2520–2525.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 15,2022 at 15:09:13 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.2514/1.47996
https://doi.org/10.2514/1.47996
https://openreview.net/forum{?}id$=$HyztsoC5Y7
https://openreview.net/forum{?}id$=$HyztsoC5Y7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

