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Abstract— Malicious attacks on modern autonomous cyber-
physical systems (CPSs) can leverage information about the
system dynamics and noise characteristics to hide while hi-
jacking the system toward undesired states. Given attacks
attempting to hide within the system noise profile to remain
undetected, an attacker with the intent to hijack a system will
alter sensor measurements, contradicting with what is expected
by the system’s model. To deal with this problem, in this paper
we present a framework to detect non-randomness in sensor
measurements on CPSs under the effect of sensor attacks.
Specifically, we propose a run-time monitor that leverages
two statistical tests, the Wilcoxon Signed-Rank test and Serial
Independence Runs test to detect inconsistent patterns in the
measurement data. For the proposed statistical tests we provide
formal guarantees and bounds for attack detection. We validate
our approach through simulations and experiments on an
unmanned ground vehicle (UGV) under stealthy attacks and
compare our framework with other anomaly detectors.

I. INTRODUCTION

Modern autonomous systems are fitted with multiple sen-
sors, computers, and networking devices that make them
capable of many applications with little/no human super-
vision. Autonomous navigation, transportation, surveillance,
and task oriented jobs are becoming more common and ready
for deployment in real world applications especially in the
automotive, industrial, and military domains. These enhance-
ments in autonomy are possible thanks to the tight inter-
action between computation, sensing, communications, and
actuation that characterize cyber-physical systems (CPSs).
These systems are however vulnerable and susceptible to
cyber-attacks like sensor spoofing which can compromise
their integrity and the safety of the surroundings. In the
context of autonomous vehicle technologies, one of the most
typical threats is hijacking in which an adversary is capable
to administer malicious attacks with the intent of leading the
system to an undesired state. An example of this problem
was demonstrated by authors in [1] in which GPS data were
spoofed to slowly drive a yacht off the intended route.

If we look at the specific architecture of these robotic
systems, typical autonomous applications employ go-to-goal
and trajectory tracking and if one or more on-board sensors
are compromised, system behavior can become unreliable.
These vehicles typically have well studied dynamics and
their sensors have specific expected behaviors according to
their characterized noise models. An attacker that wants
to perform a malicious hijacking can create non-random
patterns or add small biases in the measurements to slowly
push the system towards undesired states, for example cre-
ating undesired deviations as depicted in Fig. 1, all while
remaining hidden within the system’s and sensors noise
profile. Hence, in order for an attacker to hijack the system
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Fig. 1. A pictorial representation of the problem discussed in this paper
in which a cyber-attack is able to hijack a vehicle into unsafe states while
remaining hidden within the noise profile of its sensors.

with stealthy attack signals, a violation to the expected
random behavior of the sensor measurements must occur.

With these considerations and problem in mind, in this
work, we leverage the known characteristics of the residual
– the difference between sensor measurements and state
prediction – to build a run-time monitor to detect non-random
behaviors. To monitor randomness, the non-parametric sta-
tistical Wilcoxon Signed-Rank [2] and Serial Independence
Runs [3] tests are applied to individual sensors to deter-
mine if their measurements are being received randomly.
The Wilcoxon test is an indicator of whether the residual
is symmetric over its expected value, whereas the Serial
Independence runs test indicates whether the sequences of
residuals are arriving in a random manner. Thus, the main
objective of this work is to find hidden attacks exhibiting
non-random behavior within the noise. Given the nature of
the non-parametric statistical tests that we propose, only
random behavior of the residual is considered here, leaving
the magnitude bounds of the residual un-monitored. Several
detectors providing magnitude bounds on attacks have been
already researched in the literature, thus in this work we
also present a framework to combine existing approaches for
magnitude bound detection with the proposed randomness
monitor. In doing so, our approach improves the state-of-
the-art attack detection by adding an extra layer of checks.

A. Related Work
This work builds on previous research considering decep-

tive cyber-attacks to hijack a system by injecting false data to
sensor measurements while trying to remain undetected [4].
Many of the previous works use the residual for detection,
which gives clues whether sensor measurements are healthy
(uncompromised). Previous works characterizing the effects
of stealthy sensor attacks on the Kalman filter can be found in
[5], [6]. Similarly, authors in [4], [7] discuss how stealthy,
undetectable attacks can compromise closed-loop systems,
causing state and system dynamic degradation

Several procedures and techniques that analyze the resid-
ual for attack detection exist, one of which is the Sequential
Probability Ratio Testing (SPRT) [8] that tests the sequence
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of incoming residuals one at a time by taking the log-
likelihood function (LLF). The Cumulative Sum (CUSUM)
procedure proposed in [9] and [10] leverages the known
characteristics of the residual covariance and sequentially
sums the residual error to find changes in mean of the dis-
tribution. Compound Scalar Testing (CST) in [7] is another
technique which is computationally friendly by reducing the
residual vector with the known residual covariance matrix
into a scalar value with χ2 distribution. An improvement
of CST in [11] is made by including a coding matrix to
sensor outputs that is unknown to attackers, then an iterative
optimization algorithm is used to solve for a transform matrix
to detect stealthy attacks. Similar to our work where monitors
are placed on individual sensors, the authors in [12] propose
a Trust-based framework for sensor sets by “side-channel”
monitors to provide a weight for trustworthiness to determine
whether sensors have been compromised. Other works have
proposed attack resiliency by leveraging information from
redundant sensing. In [13], authors solve to reconstruct the
state estimate of stochastic systems using an l0 optimization
problem when less than half of the sensors are compromised.
Different from these previous works, we build a framework
to monitor sensor measurements to find previously unde-
tectable attacks by searching for non-random behavior.

The remainder of this work is organized as follows. In
Section II we begin with system, estimator models and prob-
lem formulation, followed by the description of our Random
Monitor framework in Section III. In Section IV an analysis
of worst-case stealthy attacks and characterization of the ef-
fects on system performance is presented. Finally, in Section
V we demonstrate through simulations and experiments the
performance of our framework augmented with boundary
detectors before drawing conclusions in Section VI.

II. PRELIMINARIES & PROBLEM FORMULATION

In this work we consider autonomous systems whose
dynamics can be described by a discrete-time linear time-
invariant (LTI) system in the following form:

xk+1 = Axk +Buk + νk

yk = Cxk + ηk,
(1)

with A ∈ Rn×n the state matrix, B ∈ Rn×m the input
matrix, and C ∈ Rs×n the output matrix with the state
vector xk ∈ Rn, system input uk ∈ Rm, output vector
yk ∈ Rs providing measurements from s sensors from the
set S = {1, 2, . . . , s}, and sampling time-instants k ∈ N.
Process and measurement noises are i.i.d. multivariate zero-
mean Gaussian uncertainties ν = N (0,Q) ∈ Rn and η =
N (0,R) ∈ Rs with covariance matrices Q ∈ Rn×n,Q ≥ 0
and R ∈ Rs×s,R ≥ 0 and are assumed static.

During operations, a standard Kalman Filter (KF) is im-
plemented to provide a state estimate x̂k ∈ Rn in the form

x̂k+1 = Ax̂k +Buk +L(yk −Cx̂k), (2)

where the Kalman gain matrix L ∈ Rn×s is

L = APCT (R+CPCT )−1, (3)

therefore, we assume that the KF is at steady state, i.e.,
limk→∞Pk = P . The estimation error of the KF is defined
as ek = xk − x̂k while its residual rk is given by

rk = yk −Cx̂k = Cek + ηk, (4)

The covariance of the residual (4) is defined as

Σ = E[rk+1r
T
k+1] = R+CPCT ∈ Rs×s. (5)

In the absence of sensor attacks, the residual for the ith
sensor rk,i, i ∈ S follows a Gaussian distribution rk,i ∼
N (0, σ2

i ) where σ2
i is the ith diagonal element of the residual

covariance matrix Σ ∈ Rs×s in (5) such that
E[rk,i] = 0, Var[rk,i] = σ2

i . (6)

We describe the system output considering sensor attacks as

yk = Cxk + ηk + ξk, (7)

where ξk ∈ Rs represents the sensor attack vector. Our
proposed framework consists in adding a monitor on each
sensor searching for non-random behavior of the sensor mea-
surement residual, hence any sensor may be compromised.

Definition 1: A sensor measurement is random if:
• a sequence of residuals over a time window occurs in

an unpredictable, pattern-free manner.
• residuals have proper distributions over E[rk].
Since we are considering sensor spoofing, an attack signal

ξk containing malicious data can disrupt randomness, caus-
ing measurements to display non-random behavior. Formally,
the problem that we are interested in solving is:

Problem 1: Randomness of Measurements: Given the
residual rk between a measurement yk and the correspond-
ing prediction Cx̂k as defined in (4), find a policy to
determine at run-time whether a sensor measurement is
random, i.e., if any condition in Definition 1 does not hold.

III. RANDOMNESS MONITORING FRAMEWORK

The overall cyber-physical system architecture includ-
ing our Randomness Monitor framework is summarized
in Fig. 2. The Randomness Monitor, augmented to any
boundary detector providing magnitude bounds, is placed in
the system feedback to monitor the residual sequence. We

Fig. 2. The architecture of a CPS while experiencing sensor attacks
augmented with our monitoring technique.

introduce a framework to monitor randomness of the residual
sequence through two tests and provide tuning bounds for
each to result in desired false alarm rates. From (4), the resid-
ual should have a symmetric distribution centered at zero and
the sequence of residuals should arrive in a random order,
having an absence of structure or patterns. For example, a
continuously alternating pattern of “negative” and “positive”
values, or a pattern of only “negative” values would clearly
not satisfy random sequences.

Both tests operate online providing an alarm when the
residual does not satisfy the conditions of each test. A desired
false alarm rate αdes

i ∈ (0, 1) for each ith sensor is tuned for
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each test, and in the absence of sensor attacks, the observed
alarm rate αi ∈ [0, 1] for each test should match closely with
the tuned desired value αi ∼ αdes

i .

A. Residual Symmetry Monitor
To monitor whether the sequence of residuals are symmet-

rically distributed and zero-mean, we leverage the Wilcoxon
Signed-Rank (WSR) test [2] as follows. A hypothesis test is
formed by H0 for no attacks and Ha with attacks:{

H0 : E[rk] = 0 and rk is symmetric,
Ha : E[rk] 6= 0 or rk is not symmetric. (8)

A monitor is built to check if the residual rk sequence
over a sliding monitoring window T = (k − ` + 1, k)
for ` previous steps is symmetric. We denote the vec-
tor of residual sequences over the sliding window T as
rT = (rT,1, . . . , rT,i, . . . , rT,s) where the residual se-
quence for an ith sensor is rT,i = (rk−`+1,i, . . . , rk,i).
Following H0, we would expect that the number of positive
and negative values of rk over the monitoring window are
equal. Additionally, a symmetric distribution indicates that
the expected absolute magnitude of positive and negative
residuals over a given window of length ` are equal,

E[|r+T,i|] = E[|r−T,i|], i ∈ S, (9)

where E[|r+T,i|] and E[|r−T,i|] denote the expected absolute
magnitude for positive and negative values of the residual
rk,i within the window T for any given ith sensor. In other
words, we would expect the sum of absolute values from
the residual to be equal for both the positive and negative
values. The WSR test takes both the sign and magnitude
of the residual into account to determine whether conditions
satisfy H0. Large differences in the residual signs or signed
magnitudes imply non-similar distributions, causing the test
to reject the no attack assumption and triggering an alarm.

To perform the WSR test at each time step k, we first look
at the ` number of residuals over the monitoring window
T of a given ith sensor, ranking the absolute values of
residuals rT,i, starting with rank = 1 for the smallest
absolute value, rank = 2 for the second smallest, and so
on until reaching the largest absolute value with rank = `.
Ranks of absolute values for positive (i.e. |r+T,i|) and negative
(i.e. |r−T,i|) residuals over the window T are placed into the
sets R+

k,i and R−k,i at every time instance k, respectively.
Remark 1: For residuals equal to each other and not equal

to 0 (tied for the same rank), an average of the ranks that
would have been assigned to these residuals is given to each
of the tied values. Furthermore, residuals equal to 0 are
removed and ` is reduced accordingly.

Following, we compute the sum of ranks for both the
positive and negative valued residuals,

W+
k,i =

∑
R+
k,i, W−k,i =

∑
R−k,i. (10)

Residuals with symmetric distributions have similar valued
sum of ranks, i.e. W+

k,i ∼ W−k,i, whereas the sum of ranks
in non-symmetric distributions are not similar W+

k,i � W−k,i
resulting in a rejection of H0 in (8), which we will now dis-
cuss how to solve. Assuming a large window of size ` ≥ 201

1For window length of smaller size, exact tables need to be used for
probability distributions of the Wilcoxon Signed-Rank random variable [14].

[14], the Wilcoxon random variables W+
k,i, W

−
k,i converge

to a Normal distribution (without attacks) as ` → ∞ and
can be approximated to a standard normal distribution. The
approximated expected value and variance of the two sum
of ranks W+

k,i and W−k,i, denoted as W±k,i = {W+
k,i,W

−
k,i} is

E[W±k,i] = `2+`
4 , Var[W±k,i] = (`2+`)(2`+1)

24 . (11)

The z-score of (10) for a given ith sensor is computed by

ZWk,i =
min(W±k,i)−E[W±k,i]√

Var[W±k,i]
=

min(W±k,i)−
(`2+`)

4√
(`2+`)(2`+1)

24

, (12)

and the p-value used to determine whether to reject the null
hypothesis H0 (i.e. no attacks) is computed from (12) as

pWk,i = Φ(|ZWk,i|) = 2 · 1√
2π

∫ ∞
|ZWk,i|

exp
{
−λ2

2

}
dλ. (13)

When pWk,i falls below the threshold τWi = αdes
i , i.e.,

pWk,i < τWi , we reject H0 from (8) and an alarm ψWk,i = 1 is
triggered, otherwise ψWk,i = 0. In the absence of attacks, the
alarm rate αWi for an ith sensor should be approximately the
same as the desired false alarm rate αWi ∼ αdes

i . Computation
of αWi is over the sliding window Tα = (k − `α + 1, k)
of length `α by αWi = 1

`α

∑k
j=k−`α+1 ψ

W
j,i . Conversely, an

attack that affects the residual distribution symmetry, trig-
gering the alarm ψWk,i more frequently, causing an elevation
of alarm rate αWi . For alarm rates exceeding a user defined
alarm rate threshold, i.e. αWi > ατi , the ith sensor is deemed
compromised. In the following lemma we provide a proof for
bounds of the WSR test variables (10) to satisfy a desired
false alarm rate αdes

i .
Lemma 1: Given the residual rk,i for an ith sensor over

a monitoring window T consisting of ` residuals and desired
false alarm rate αdes

i , an alarm is triggered by the WSR test
when ΩW− ≤ {W±k,i} ≤ ΩW+ is not satisfied where

ΩW± =±|Φ−1(αdes
i /2)|

√
(`2 +`)(2`+1)/24+(`2+`)/4. (14)

Proof: From the Wilcoxon test statistic equaling the
sum of ranks in (10), we can rearrange (12) such that
min(W±k,i) = ZWcrit

k,i

√
(`2 + `)(2`+ 1)/24+(`2+`)/4 where

ZWcrit
k,i = Φ−1(αdes

i /2) is the critical value of ZWk,i for
min(W±k,i) satisfying a desired alarm rate αdes

i to not reject
(8). The lower bound of {W−k,i,W

+
k,i} must satisfy

ΩW− = Φ−1(αdes
i /2)

√
(`2 + `)(2`+ 1)/24

+ (`2 + `)/4 ≤ min(W−k,i,W
+
k,i),

(15)

to not sound off an alarm ψWk,i. Conversely, we want to show
that if the lower bound ΩW− ≤ min(W±k,i) in (15) holds
then the upper bound ΩW+ holds as well. By again manip-
ulating (12) such that we take the maximum max(W±k,i) =

ZWcrit
k,i

√
(`2 + `)(2`+ 1)/24 + (`2 + `)/4 where this time

ZWcrit
k,i = Φ−1(1−αdes

i /2) is the critical value of ZWk,i for the
upper bound max(W±k,i) satisfying a desired alarm rate αdes

i
to not reject (8), the upper bound is written as

ΩW+ = Φ−1(1− αdes
i /2)

√
(`2 + `)(2`+ 1)/24

+ (`2 + `)/4 ≥ max(W−k,i,W
+
k,i),

(16)
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to not trigger the alarm ψWk,i. In the calculation of the critical
z-score value from the standard normal distribution N (0, 1)
to satisfy a given desired alarm rate αdes

i , it is easy to show
that |Φ−1(αdes

i /2)| = Φ−1(1 − αdes
i /2) and Φ−1(αdes

i /2) =
−|Φ−1(αdes

i /2)| giving the final bounds of ΩW− ≤ (W±k,i =

{W−k,i,W
+
k,i}) ≤ ΩW+ as

−|Φ−1(αdes
i /2)|

√
(`2 +`)(2`+1)/24 + (`2 +`)/4 ≤

W±i ≤ |Φ
−1(αdes

i /2)|
√

(`2 +`)(2`+1)/24+(`2 +`)/4,

satisfying the bounds of ΩW± in (14). With this we con-
clude that if min(W±k,i) does not satisfy (15) then ΩW− ≤
{W−k,i,W

+
k,i} ≤ ΩW+ is not satisfied, triggering alarm ψWk,i

for a desired false alarm rate αdes
i , ending the proof.

B. Serial Randomness Monitor

The WSR test alone is not sufficient to test for random-
ness, since an attacker could manipulate measurements by
creating specific patterns to avoid detection on the WSR
test. To test further, we need to determine if the sequence
of residuals are being received randomly by leveraging
the Serial Independence runs (SIR) test [3]. The SIR test
examines the number of runs that occur over the sequence,
where a “run” is defined as one or more consecutive residuals
that are greater or less than the previous value. A random
sequence of residuals over a given window length should
exhibit a specific expected number of runs: too many or too
few number of runs would not satisfy random sequential
behavior. A hypothesis test is formed withH0 for the absence
of sensor attacks and Ha where attacks are present by

H0: NR = E[NR], Ha: NR 6= E[NR], (17)

where NR is the number of observed runs, to determine
whether the number of runs satisfy a randomly behaving
sequence. First, we take the difference of residuals at time
instances k and k − 1 over a window T ′

r′T ′,i := r′k,i = rk,i − rk−1,i , k ∈ T ′, (18)

where T ′ = {k−`+2, . . . , k} = T \{k−`+1} is the monitor
window T shortened by one by removing the oldest time
instance. This in turn gives us `′ = `−1 residual differences.

Remark 2: A residual difference r′k,i = 0, k ∈ T ′ from
(18) is not considered in the test and the size of `′ is reduced
accordingly, i.e., `′ = `′ − 1.

From the sequence of residual differences (18), we take
the sign of each residual within the window T ′,

sign(r′k,i), k ∈ T ′, (19)

forming a sequence of `′ positive and negative signs. The
number of runs NR are observed over the sequence of `′
residual differences. The expected mean and variance of runs
[3] are computed by

E[NR] =
2`′ − 1

3
, Var[NR] =

16`′ − 29

90
. (20)

Assuming large data sets (i.e. window length ` ≥ 25) [3],
the distribution of NR converges to a normal distribution
as `′ → ∞ and can be approximated to a zero mean unit
variance standard normal distribution NR ∼ N (0, 1). From
the number of observed runs NR and number of residual

differences `′, we compute the z-score test statistic for Serial
Independence from a standard normal distribution

ZSk,i =
NR − E[NR]√

Var[NR]
=
NR −

(
2`′ − 1

)
/3√(

16`′ − 29
)
/90

. (21)

Using the z-score from (21) we compute the p-value of the
observed signed residual differences by

pSk,i = Φ(|ZSk,i|) = 2 · 1√
2π

∫ ∞
|ZSk,i|

exp
{
−|λ|2

2

}
dλ. (22)

When pSk,i < τSi is satisfied where τSi = αdes
i denotes the

threshold, we reject the null hypothesis H0 from (17) and
an alarm ψSk,i = 1 is triggered. In the absence of attacks, the
alarm rate αSi is approximately the same as the desired false
alarm rate αSi ∼ αdes

i . Alarm rate αSi over the sliding window
Tα is computed by αSi = 1

`α

∑k
j=k−`α+1 ψ

S
j,i. Alarm rates

exceeding a user defined alarm rate threshold, i.e. αSi > ατi ,
signifies that the ith sensor is compromised.

Remark 3: A special case of triggering alarm ψSk,i = 1 is
when Remark 2 is satisfied, when two consecutive residuals
are equal. Since rk,i ∼ N (0, σ2

i ), the probability of having
two residuals of the same value is equal to 0.

The following lemma provides a proof for bounds of NR
in the SIR test to satisfy a desired false alarm rate αdes

i .
Lemma 2: Given the residual differences r′k,i = rk,i −

rk−1,i for an ith sensor over a window T ′ and desired false
alarm rate αdes

i , an alarm is triggered by the SIR test when
ΩS− ≤ NR ≤ ΩS+ is not satisfied where

ΩS±=±|Φ−1(αdes
i /2)|

√
(16`′−29)/90 + (2`′−1)/3. (23)

Proof: With an observed number of runs NR within
a window of `′ residual differences, we can rearrange (21)
such that NR = |ZSk,i|

√
(16`′ − 29)/90 + (2`′−1)/3 where

|ZSk,i| = |Φ−1(αdes
i /2)|, we find the bounds of NR to not

reject (17) for a desired false alarm rate αdes
i are

−|Φ−1(αdes
i /2)|

√
(16`′−29)/90+(2`′−1)/3 ≤ NR

≤ |Φ−1(αdes
i /2)|

√
(16`′−29)/90+(2`′−1)/3.

(24)

From (24) we can finally obtain the bounds of ΩS± in (23)
for alarm triggering at a desired false alarm rate αdes

i .

IV. STEALTHY ATTACK ANALYSIS

This section analyzes the advantages of including the pro-
posed randomness monitoring framework into well known
boundary/bad-data attack detectors. To this end, we first
introduce two well known anomaly (boundary) detectors
– Bad-Data [4] and Cumulative Sum [9] detectors – and
analyze the effects of stealthy attacks on a system with and
without our Randomness Monitor.

A. Boundary Detectors
To show that our framework can easily be augmented

with any detector that provides magnitude boundaries, we
consider two different boundary detectors found in the CPS
security literature. Both boundary detectors discussed in this
section leverage the absolute value of the residual (4) for
attack detection. Consequently, in the absence of attacks
(i.e. ξk = 0), this leads to |rk,i| following a half-normal
distribution [15] defined by
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E[|rk,i|] =
√

2/πσi, Var[|rk,i|] = σ2
i (1− 2/π). (25)

where σ2
i was defined as the ith diagonal element in (5).

The first detector that we consider is the Bad-Data Detec-
tor (BDD) [4], a benchmark attack detector to find anomalies
in sensor measurements, alarming when the residual error
goes beyond a threshold. Similar to our detection framework
in Section III, the BDD can also be tuned for a desired false
alarm rate αdes

i . Considering the residual rk,i in (4), the BDD
procedure for each ith sensor is as follows:

Bad-Data Detector Procedure
If |rk,i| > τBi , then alarm ψBk,i = 1, i ∈ S, (26)

Assuming the system is without attacks, the tuned thresh-
old τBi for the BDD in (26) with rk,i ∼ N (0, σ2

i ) is solved
by τBi =

√
2σierf−1(1−αdes

i ) where erf−1(·) is the inverse
error function, resulting in αBi ∼ αdes

i .
The second well-known boundary detector that we con-

sider is the CUmulative SUM (CUSUM), which has been
shown to have tighter bounds on attack detection than the
BDD [9]. The CUSUM leverages the absolute value of the
residual in the detection procedure and is solved by

CUSUM Detector Procedure
Initialize S1,i = 0, i ∈ S,
Sk,i = max(0, Sk−1,i + |rk,i|−bi), if Sk−1,i ≤ τCi ,
Sk,i = 0 and Alarm ψCk,i = 1, if Sk−1,i > τCi .

(27)

The working principle of of this detector is to accumulate
the residual sequence in Sk,i, triggering an alarm ψCk,i = 1

when the test variable surpasses the threshold τCi . A detailed
explanation of how to tune threshold τCi given a bias bi for
a desired false alarm rate αdes

i can be found in [9].

B. State Deviation under Worst-case Stealthy Attacks
We consider the reference tracking feedback controller

uk = Kx̂k + krx
ref
k , (28)

where K ∈ Rs×n is the state feedback control gain matrix,
kr ∈ Rm×m is a reference gain for output tracking, xref

k
is the reference state, and x̂k is the KF state estimate from
(2)-(3). Choosing a suitable K such that (A+BK) is stable
(i.e. ρ[A+BK] < 1, where ρ[·] is the spectral radius) and
(A,C) is assumed stabilizable, the closed-loop system can
be written within terms of the KF estimation error as
xk+1=(A+BK)xk+Bkrx

ref
k −BKek+νk,

ek+1=(A−LC)ek −L(ξk + ηk) + νk.
(29)

As an attacker injects signals into the measurements (i.e.
ξ 6= 0), system dynamics are indirectly affected via the inter-
connected term BKek from the estimation error dynamics.

In the remaining of this section we describe the maximum
damage that can occur due to worst-case scenario stealthy
sensor attacks. We assume the attacker has perfect knowl-
edge of system dynamics, detection procedures, and state
estimation. The objective of an attacker is to cause maximum
damage to the system state by injecting attack signals ξk to
measurements while also remaining undetected. With only
the BDD implemented, the effects of a worst-case scenario
attack while not triggering an alarm can be derived from (4)
and (26) with a sustained attack signal

ξk,i = −Ciek − ηk,i + τBi , (30)

causing the residual |rk,i|= τBi to not trigger the BDD alarm.
Now considering CUSUM as a stand-alone detector, an

adversarial wants to avoid attack vectors such that the moni-
toring test variable exceeds threshold τCi , thereby causing
a reset Sk,i = 0, if Sk−1,i > τCi in (27) by satisfying
the CUSUM procedure sequence Sk,i = max(0, Sk−1,i +
|Ciek + ηk,i + ξk,i| − bi) ≤ τCi if Sk−1,i ≤ τCi . For
maximum effect on state deviation, the attacker saturates the
CUSUM test statistic such that Sk,i = τCi to achieve no
alarm sequences. Here we define a saturation as follows:

Definition 2: Saturation of a boundary detector is defined
as the maximum allowable attack signal to force the residual
to, but without exceeding, the detector threshold.

Beginning at a time k, an attacker immediately saturates
Sk,i with the attack signal,

ξk,i = −Ciek − ηk,i + bi − Sk−1,i + τCi , (31)

followed by
ξk,i = −Ciek − ηk,i + bi. (32)

for all future time instances to hold Sk,i at threshold τCi .
With the Randomness Monitor augmented with either

BDD or CUSUM, an attacker can no longer hold an attack
sequence to one side as described in attacks (30)-(32).
Rather, an attacker is forced to create an attack sequence
such that rk,i alternates residual signs if it wants to avoid
triggering alarms for both the WSR and SIR tests. The
most effective attack for maximum state deviation with our
augmented framework is to saturate the boundary detector as
often as possible, while leaving the remaining attack signals
with an opposite sign with respect to the saturating attacks
to force the residual to be as close as possible to zero.

From the WSR test, given a monitoring window `, the
minimum number of non-saturating attack signals ξk,i to
not trigger an alarm ψWk,i is

γ`i = min
`j

( `j∑
rank=1

rank

)∣∣∣∣ `j∑
rank=1

rank > min(W±i ), (33)

in which `j ∈ L = (1, . . . , `) and L is the set of all ranks as
introduced in Section III-A. From (33), we can then find the
maximum number of saturating attack signals by β`i = `−γ`i .

Proposition 1: The maximum allowable saturating attack
signal converges to lim`→∞

β`i
` = 1 −

√
2
2 ≈ .293 for any

αdes
i as shown by the dashed black line in Fig 3.

Fig. 3. Allowable percentage of saturating attack signals of given windows
lengths for different desired alarm rates αdes.

To this point, we have discussed worst-case scenario attack
sequences causing saturation of the test variable (in this paper
BDD and CUSUM) to maximize the effect of the attack.
However, from Remark 3 in Section III-B, a special case to
satisfy requirements of the SIR test is when two consecutive
residuals of same value triggers an alarm ψSk,i = 1. To work
around this issue, a stealthy attacker with perfect knowledge
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of the SIR test can include a small uniformly random number
to the attack signal ξk,i denoted by δk,i ∼ U(0, ε) where
ε ∈ R+ is infinitesimally small and E[δk,i] = ε

2 ≈ 0.
Thus, the worst-case scenario with the Randomness Monitor
augmented to the BDD follows{
ξk,i =−Ciek − ηk,i + τBi − δk,i, if saturating,
ξk,i =−Ciek − ηk,i − δk,i, if non-saturating, (34)

in order to not trigger an alarm. Similarly, but with the
CUSUM detector, an undetectable attack sequence follows{
ξk,i =− Sk−1,i −Ciek

− ηk,i + bi + τCi − δk,i,
if saturating,

ξk,i = −Ciek − ηk,i + bi − δk,i, if non-saturating.
(35)

Given the alternating signed sequence of residuals over the
monitoring window, the expected value of rk,i under worst-
case scenario stealthy attacks is denoted as{

E[rBk,i] = τBi (
β`i
` − δk,i) ≈ τ

B
i
β`i
` , for Bad-Data,

E[rCk,i] = τCi (
β`i
` − δk,i) ≈ τ

C
i
β`i
` , for CUSUM.

(36)

With our framework augmented to the BDD, the expected
value of the residual sequence is described as E[rBk ] =
(E[rBk,1], . . . ,E[rBk,s])

T and the expectation of the closed-
loop system (29) under attack (34) results in

E[xk+1] = (A+BK)E[xk]−BKE[ek],

E[ek+1] = AE[ek]−LE[rBk ].
(37)

Note, in (37), the reference signal term Bkrx
ref
k from (29)

has been removed as we are interested in the expected state
deviation under an attack. It is clear that if ρ[A] > 1 and
E[rBk ] 6= 0 then the expectation of the estimation error
E[ek] for destabilized states diverge to infinity as k → ∞
(depending on algebraic properties of A), indirectly causing
these states within E[xk] to also diverge unbounded.

Lemma 3: Considering a closed-loop system from (1) and
(37), where ρ[A] < 1 and attack sequence in (34), the limit
for expected state divergence limk→∞ E[xk] = ∆B is

∆B = (I −A−BK)−1BK(I −A)−1LE[rBk ]. (38)
Proof: Assuming both ρ[A] < 1 and ρ[A+BK] < 1

are satisfied, signifying the invertibility of (I−A) and (I−
A−BK) in (38), an expected equilibrium is reached as k →
∞ by E[x∞] = (I −A −BK)−1BK(I −A)−1LE[rBk ]
and E[e∞] = (I − A)−1LE[rBk ] such that the evolution
of (37) with the expected differences E[xk] − E[x∞] and
E[ek]− E[e∞] is described by

E[xk+1]− E[x∞] = (A+BK)(E[xk]− E[x∞])

−BK(E[ek]− E[e∞]),

E[ek+1]− E[e∞] = AE[ek]− E[e∞],

(39)

are asymptotically stable i.e., limk→∞(E[xk+1]−E[x∞]) =
0 and limk→∞(E[ek+1]−E[e∞]) = 0, therefore concluding
the proof.

Similarly, with the Randomness Monitor augmented to
CUSUM, the expected closed-loop system evolution under
attack sequence (35) is described by

E[xk+1] = (A+BK)E[xk]−BKE[ek],

E[ek+1] = AE[ek]−LE[rCk ].
(40)

where E[rCk ] = (E[rCk,1], . . . ,E[rCk,s])
T is the expected value

of the residual sequence vector for CUSUM in (36).
Lemma 4: Considering a closed-loop system from (1) and

(40), where ρ[A] < 1 and attack sequence in (35), the limit
for expected state divergence limk→∞ E[xk] = ∆C is

∆C = (I −A−BK)−1BK(I −A)−1LE[rCk ]. (41)
Proof: The proof is omitted here due to space con-

straints but follows the proof for Lemma 3.

V. RESULTS

The proposed Randomness Monitor framework was vali-
dated in simulation and experiments and compared to state-
of-the-art detection techniques introduced in Section IV-B.
The case study presented in this paper is an autonomous way-
point navigation of a skid-steering differential-drive UGV
with the following linearized model [16]

v̇ =
1

m
(Fl + Fr −Brv),

ω̇ =
1

Iz

(w
2

(Fl − Fr)−Blω
)
, θ̇ = ω,

(42)

where v is the velocity, θ is the vehicle’s heading angle,
and ω its angular velocity, forming the state vector x =
[v, θ, ω]T . Fl and Fr describe the left and right input forces
from the wheels, w is the vehicle width, while Br and Bl
are resistances due to the wheels rolling and turning. The
continuous-time model (42) is discretized with a sampling
rate ts = 0.05 to satisfy the system model described in (1).

In both simulation and experiment we perform two dif-
ferent attack sequences: Attack #1 where a stealthy attack
sequence concentrates the residual distribution with a non-
zero mean and smaller variance whereas Attack #2 creates a
signed pattern sequence {+, +, +, -} of residual differences
r′k,i. Both attacks are chosen to not increase the boundary
detector alarm rate.

A. Simulations

Considering the UGV system model (42) in our case
study, we show the effect of stealthy attacks on the ve-
locity sensor on state x1 with a monitoring window length
` = 100. Table I gives the resulting alarm rates when our
framework is augmented to boundary detectors (BDD and
CUSUM) with all detectors tuned for desired false alarm
rates αdes ∈ {.05, .20} and in separate simulations we show
the alarm rate for No Attack, Attack #1, and Attack #2. As
expected, with no attacks present, all alarm rates converge
approximately to the desired false alarm rate αdes

1 . Under
Attack #1, alarm rates for only the WSR increase to higher
values and similarly the Attack #2 pattern gives an increased
alarm rate to only the SIR test. We should note that the
window length ` results in different behaviors: short window
lengths result in faster responses, while longer window
lengths react slower but are able to detect more hidden
attacks exhibiting non-random behavior than a monitor with
a short window length. Fig. 4 demonstrates attacks on the
velocity sensor where our detectors are tuned for αdes

1 = 0.10
and compared with the CUSUM boundary detector. Attack #1
occurs between (50, 125)s triggering the WSR test, Attack #2
between (175, 250)s triggering the SIR test, and from 300s a
third attack satisfying bounds for both randomness tests but
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violating the CUSUM test is presented. Velocity is reduced
as expected according to (29) while experiencing the effects
of each attack.

TABLE I
SIMULATED ALARM RATES

Fig. 4. State deviation under various attacks and alarm rates over a moving
window of the past 100 time steps.

B. Experiments
In this section we present a case study for a UGV perform-

ing way-point navigation under stealthy sensor attacks. For
our case, the UGV travels to a series of goal positions while
avoiding a restricted area with a desired cruise velocity vref =
0.15m/s while experiencing the same class of attacks as in
Section V-A. This time the IMU sensor that measures angle θ
is spoofed while our Randomness Monitor is augmented with
the BDD. Fig. 5 shows the UGV position while traveling
to the four goal points. For both attacks the vehicle enters
the restricted area (marked by red tape) while the boundary
detector (BDD) does not see the attack in each case. The
alarm rate for the WSR test increases for the case under
Attack #1 (solid line) and the SIR test alarm rate increases
during the case for Attack #2 (dashed line), as expected.

Fig. 5. UGV position under Attack #1 (solid line) and Attack #2 (dashed
line). The bottom graph displays the resulting alarm rates.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have proposed a monitoring framework
to find cyber-attacks that present non-random behavior with
the intention to hijack a system from a desired state. Our
framework leverages the Wilcoxon Signed-Rank test and
Serial Independence Runs test over a sliding monitor window
to detect stealthy attacks when augmented to state-of-the-
art boundary detectors. Among the key results of this work
we provide: bounds for desired false alarm rate for each
test which are leveraged to detect attacks, bounds on state
deviation under worst case attack scenario, demonstrating
that the proposed framework outperform detectors that solely
use boundary tests. The proposed approach was validated
through simulations and experiments on UGV case studies.

In our future work we plan to extend the current work to
remove this dependency from the monitoring window and
plan to leverage our approach in systems with redundant
sensors to remove the compromised sensors and build attack
resilient controllers similar to our previous work in [6].

ACKNOWLEDGMENTS

This work is based on research sponsored by ONR under
agreement number N000141712012, and NSF under grant
#1816591.

REFERENCES

[1] J. Bhatti and T. E. Humphreys, “Hostile control of ships via false gps
signals: Demonstration and detection,” Navigation, vol. 64, no. 1, pp.
51–66, 2017.

[2] F. Wilcoxon, “Individual comparisons by ranking methods,” Biomet-
rics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[3] C. Cammarota, “The difference-sign runs length distribution in testing
for serial independence,” Journal of Applied Statistics, vol. 38, no. 5,
pp. 1033–1043, 2011.

[4] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection
attacks against state estimation in wireless sensor networks,” in 2010
IEEE 49th Conference on Decision and Control, pp. 5967–5972.

[5] C. Bai and V. Gupta, “On kalman filtering in the presence of a
compromised sensor: Fundamental performance bounds,” in 2014
American Control Conference, June 2014, pp. 3029–3034.

[6] N. Bezzo, J. Weimer, M. Pajic, O. Sokolsky, G. J. Pappas, and I. Lee,
“Attack resilient state estimation for autonomous robotic systems,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sept 2014, pp. 3692–3698.

[7] C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical
systems against stealthy deception attacks,” in 2013 American Control
Conference, June 2013, pp. 3344–3349.

[8] C. Kwon, S. Yantek, and I. Hwang, “Real-time safety assessment of
unmanned aircraft systems against stealthy cyber attacks,” Journal of
Aerospace Information Systems, vol. 13, no. 1, pp. 27–45, 2016.

[9] C. Murguia and J. Ruths, “Characterization of a cusum model-based
sensor attack detector,” in 2016 IEEE 55th Conference on Decision
and Control (CDC), Dec 2016, pp. 1303–1309.

[10] C. Murguia and J. Ruths, “On model-based detectors for linear time-
invariant stochastic systems under sensor attacks,” IET Control Theory
Applications, vol. 13, no. 8, pp. 1051–1061, 2019.

[11] F. Miao, Q. Zhu, M. Pajic, and G. J. Pappas, “Coding sensor outputs
for injection attacks detection,” in 53rd IEEE Conference on Decision
and Control, Dec 2014, pp. 5776–5781.

[12] T. Severson, et al., “Trust-based framework for resilience to sensor-
targeted attacks in cyber-physical systems,” in 2018 Annual American
Control Conference (ACC), June 2018, pp. 6499–6505.

[13] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and
I. Lee, “Design and implementation of attack-resilient cyberphysical
systems: With a focus on attack-resilient state estimators,” IEEE
Control Systems Magazine, vol. 37, no. 2, pp. 66–81, April 2017.

[14] S. Siegel, Nonparametric statistics for the behavioral sciences.
McGraw-Hill New York, 1956.

[15] S. M. Ross, Introduction to Probability Models, Ninth Edition. Or-
lando, FL, USA: Academic Press, Inc., 2006.

[16] J. J. Nutaro, Building software for simulation: theory and algorithms,
with applications in C++. John Wiley & Sons, 2011.

2042

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 19,2022 at 19:18:20 UTC from IEEE Xplore.  Restrictions apply. 


