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Abstract— Autonomous mobile robots (AMRs) equipped with
high-quality cameras have revolutionized the field of inspections
by providing efficient and cost-effective means of conducting
surveys. While autonomous inspection is gaining traction in
various applications, acquiring the best inspection information
autonomously using effective task and motion planning (TAMP)
remains a complex challenge. In situations where objects may
block a robot’s view, it is necessary to use reasoning to
adjust the task and seek the optimal points for collecting
data. Many researchers assume that inspection information
can be continuously collected and stored either locally or
via a cloud-based solution; however, these approaches are
limited to storage capacity and network restrictions and re-
quire labor-intensive post-processing. To address this challenge,
we present an autonomous Next-Best-View (NBV) framework
that maximizes the inspection information while reducing the
number of pictures needed during operations. The framework
consists of a formalized evaluation metric using ray-tracing and
Gaussian process interpolation to estimate information reward
based on the current understanding of the partially-known
environment. Particle swarm optimization (PSO) is used to
sample candidate views in the environment and identify the
NBV point. The effectiveness of the proposed framework is
validated in simulations and experiments.

Note—Simulations and experiments videos can be accessed
at https://www.bezzorobotics.com/sg-lb-tamp23.

I. INTRODUCTION

Autonomous mobile robots (AMRs) have been particularly
useful for inspection purposes because of their agility and
mobility. However, most existing autonomous inspection
frameworks are not fully automated and collect all available
information during operations, relegating data processing and
decision-making to humans. With this in mind, we note
two gaps in autonomous inspection and photography: i)
existing approaches overlook the complexity associated with
continuously and repetitively acquiring information due to
the absence of an explicit definition of a “good” picture,
and ii) the ability for an autonomous vehicle to perform
prolonged tasks while minimizing post-processing efforts,
decreasing data storage, and ensuring safety will make
autonomous inspection more useful and accessible to real-
world operations.

In this work, our goal is to bridge these gaps. We assume
that the robot knows the target’s T locations and dimensions
while the obstacles, O, can either be known or unknown in
the environment – represented by an occupancy map M.
To find the best point for inspection, the vehicle should
update the best view position as obstacles are detected that
compromise inspection photo quality. The goal is to finish the
task by taking as few pictures as possible while preserving
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as much information of T as possible. The problems are
formally defined as follows:

Problem 1. Inspection Task Planning: Given the target’s

inspection locations and dimensions, derive an optimal task

plan that minimizes energy consumption for the robot.

Problem 2. Metrics of the Best View for Target Inspection:
Given the location and dimensions of the target T and a

set of known obstacles represented by an occupancy map

M, find an evaluation metric G(T,M,P) that scores the

sampled viewpoints P for the vehicle to visit at runtime.

Problem 3. Max-Info Motion Planning: Given a partially-

known environment and metrics for picture evaluation, dy-

namically adjust the task and plan a path that minimizes the

time to the inspecting task while ensuring the robot’s safety.

The TAMP framework should accommodate changes in the

environment, as new obstacles may appear.

II. METHODOLOGY

We propose a Next-Best-View-based (NBV) TAMP
framework[1] to provide a comprehensive strategy to dynam-
ically plan the inspection task to achieve the fewest number
of viewpoints that covers the entire inspected target. The
vehicle is initialized at a starting point in a partially-known
environment with the target information known. The high-
level task plan is derived by solving a traveling salesman
problem (TSP). During the mission, the vehicle updates its
map using its equipped depth sensor. After the update, candi-
date views are generated and evaluated via our photo quality
scoring metrics. Particles migrate toward locations that offer
the best viewpoints using PSO. Particles are reassessed at
the new viewpoints until the termination criterion is met.
The best viewpoint is then passed to the vehicle’s planner
and controller to drive it toward the location. As the vehicle
moves, the map is updated and the viewpoint is reevaluated
based on any new information. Once the vehicle reaches the
best viewpoint, a photo is captured and the target interest is
updated based on the estimated information gained from the
captured photo using Gaussian process interpolation.

A. Task Planning

To address Problem 1, we solve a TSP within a full
connected graph. The graph is constructed in the way that
task locations are served as nodes. The graph’s edges are
directional, and the associated costs are calculated by es-
timating energy consumption during the traversal between
nodes. The estimates are given by the energy consumption
model designed in our previous work [2]. Fig. 1 shows an
example of task planning result for an inspection mission.
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Fig. 1. Given the inspection tasks, a high-level task plan is derived by
solving an energy-efficient TSP problem.

B. Motion and Path Planning

Given the task plan, motion and path planning is achieved
via an NBV approach. The main goal of NBV [3] is to
select the most informative viewpoint, addressing Problem

2. We propose an inspection photo evaluation metric based
on the perspective distortion, the scale of a target within
the viewing frame, and the estimated information gained
from a viewpoint. Consider a target in continuous space
T ∈ R

m×nd where nd is the dimension of the target defined
by m coordinates. Viewpoints are evaluated as follows:

G(T,M,P) = µd · µs ·
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where g(Ä) represents the importance of the target portion.
g(Ä) = 1 denotes that the portion has not been inspected,
while g(Ä) = 0 indicates that the region is obscured or has
already been observed. µd and µs are discount factors that
reflect the amount of distortion and the percentage of the
target that occupies the frame. Ud(·) and Us(·) represent the
utility functions associated with the perspective distortion
and the scale of the target, penalizing unbalanced target
captures and undesired scale, respectively. ´ is a user-defined
parameter that specifies the desired percentage of the target
within the frame. A visual illustration of the metric using a
two-dimensional example is presented in Fig. 2.

Fig. 2. Pictorial depiction of the proposed evaluation metric.

We note that evaluating numerous potential viewpoints
can be expensive at runtime. To mitigate this issue, we
use ray-tracing [4] to examine the voxels in M to validate
the visibility of the target. However, using an unlimited
number of rays is impractical in real world. Thus, we use
Gaussian process interpolation [5] to estimate the likelihood
of the target visibility across non-sampled target portions in
between ray termination coordinates.

To solve Problem 3, the viewpoint evaluation is used in
conjunction with a particle swarm optimization [6] (PSO)
which samples the environment to find the best inspection
point. PSO is employed not only because of the highly
nonlinear nature of the problem, which includes expansive

flat regions posing challenges to gradient descent methods,
but also due to its adaptability to runtime considerations.
In our inspection application, a candidate viewpoint is rep-
resented as a point in an N -dimensional solution space. A
swarm of particles is used to represent a number of potential
viewpoints. The information gain G is calculated for each
viewpoint and the particles migrate toward the particle with
the highest evaluation score. The viewpoint associated with
the highest-rated particle is the desired inspection point. The
robot can then take advantage of algorithms such as A* and
RRT* to find a collision-free path.

III. RESULTS

Fig. 3 shows results of our approach in simulation in which
a quadrotor detects a T-shape obstacle and autonomously
decides to focus on the right part of the target first and
subsequently moves to the left side to capture the rest of
the target. Fig. 4 shows experiment results for an inspection
task with an a priori unknown slash-shaped obstacle. The
robot locates the best vantage point at which the obstacle
appears as a thin line.

Fig. 3. Simulation result of a quadrotor inspecting the front and side of
a building. Heatmaps in the second row show the ground truth information
gain at all viewpoints with the proposed metric.

Fig. 4. An example of inspecting an object with a slash-shaped obstacle.
The robot preserves almost the entire target with minimal distortion.

IV. CONCLUSION

In this work, we have presented a novel TAMP framework
for an autonomous vehicle to take a quality image of a target
in a partially-known environment. The extensive results show
the validity, applicability, and generality of the method.
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