
Take Your Best Shot: Sampling-Based Next-Best-View Planning for
Autonomous Photography & Inspection

Shijie Gao*1, Lauren Bramblett*2 and Nicola Bezzo1,2

Abstract— Autonomous mobile robots (AMRs) equipped with
high-quality cameras have revolutionized the field of inspections
by providing efficient and cost-effective means of conducting
surveys. The use of autonomous inspection is becoming more
widespread in a variety of contexts, yet it is still challenging
to acquire the best inspection information autonomously. In
situations where objects may block a robot’s view, it is nec-
essary to use reasoning to determine the optimal points for
collecting data. Although researchers have explored cloud-based
applications to store inspection data, these applications may
not operate optimally under network constraints, and parsing
these datasets can be manually intensive. Instead, there is an
emerging requirement for AMRs to autonomously capture the
most informative views efficiently. To address this challenge,
we present an autonomous Next-Best-View (NBV) framework
that maximizes the inspection information while reducing the
number of pictures needed during operations. The framework
consists of a formalized evaluation metric using ray-tracing and
Gaussian process interpolation to estimate information reward
based on the current understanding of the partially-known
environment. A derivative-free optimization (DFO) method is
used to sample candidate views in the environment and identify
the NBV point. The proposed approach’s effectiveness is shown
by comparing it with existing methods and further validated
through simulations and experiments with various vehicles.
Note—Code and videos of the simulations and experiments are
provided in the supplementary material and can be accessed
at https://www.bezzorobotics.com/sg-lb-iros24.

I. INTRODUCTION

Autonomous mobile robots (AMRs) are becoming in-
creasingly common in a wide range of industries, including
manufacturing, healthcare, logistics, and entertainment. Be-
cause of their agility and mobility, autonomous robots have
been particularly useful for photography [1] and inspection
purposes [2]. The deployment of robots for these applications
also offers other benefits, including increased safety, effi-
ciency, and accuracy. Robots equipped with cameras, depth
sensors, and other tools can access areas that are hazardous
or inaccessible to human inspectors [3] (e.g., disaster sites,
high-rises, internal pipe systems, and underwater structures).
The use of robots to inspect buildings and other infras-
tructures is a promising solution to address the challenges
associated with traditional inspection methods. However,
most of the existing autonomous inspection frameworks are
not fully automated and collect all available information
during operations, relegating data processing and decision-
making to humans. Thus, to fully automate robotic inspec-
tion, robots must be able to assess the quality of inspection
photos and discard unnecessary data. However, the evalua-
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Fig. 1. A pictorial depiction of the problem. A UAV is performing an
inspection task to capture an oblique view (i.e., front view) of a house.
When comparing these four examples, a bird’s eye view in D preserves the
front view and provides the most comprehensive information.

tion of photos is inherently subjective. Even among human
observers, reaching a unanimous agreement on the quality
rating of a photo can be challenging [4], [5]. This introduces
additional challenges in constructing a formal metric that
precisely defines the criteria for a “good” picture. With these
considerations in mind, we identify two notable gaps in the
robotics literature focused on inspection and photography:
i) the absence of an explicit definition of a good picture,
and ii) that current inspection frameworks do not incentivize
efficient data collection during prolonged tasks, overlooking
the cost of consuming repetitive information and the need
for extensive human post-processing efforts. We propose that
bridging these gaps will make autonomous inspection more
useful and accessible to real-world operations.

Typically, during inspection tasks, the location and dimen-
sions of the region of interest (ROI) are known, and the
surroundings of the ROI are uncertain. For example, in the
house inspection shown in Fig. 1, the location of the building
is known, while the landscape and adjacent structures can
change, potentially obstructing the ROI and jeopardizing the
safety of the unmanned aerial vehicle (UAV). In this scenario,
the UAV should autonomously detect that trees obstruct
viewing point (A) and that, by viewing from either side (B,
C), more information can be obtained. The UAV’s objective
is to autonomously evaluate different viewpoint candidates
without visiting them, identify the best viewpoint (a bird’s-
eye view, D in the example in Fig. 1), and route to a new
viewpoint, considering the observed obstacles.

We consider the framework presented in this paper as
a Next-Best-View (NBV) solution in which the goal is to
obtain the fewest viewing points and maximize inspection
information. We propose an evaluation metric based on the
perspective distortion, the scale of a target within the viewing
frame, and the estimated target coverage which will allow us
to find the best viewpoint. The metric is used in conjunction
with a derivative-free optimization (DFO) method which
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samples the environment to find the best inspection point.
The main contribution of this work is a computationally
efficient Gaussian process interpolation using DFO to opti-
mize the proposed evaluation metric over uniformly sampled
candidate views maximizing target coverage at runtime.

II. RELATED WORK

A well-studied problem in the field of mobile robot
inspection is the Next-Best-View problem. First introduced
by Connolly [6], NBV focuses on developing algorithms
to efficiently plan and execute the exploration of objects
or environments. The main goal of NBV is to select the
most informative viewpoint for the robot to observe and
improve its knowledge of a mission objective, such as an
environment or an object. This is achieved by computing an
optimized viewpoint based on a task-oriented optimization
term that considers the robot’s objectives and constraints.
As NBV focuses on determining the optimal viewpoint
for the next observation, it can be considered as a subset
or specific case within the exploration framework. In the
literature, NBV has been extensively explored for 3D object
reconstruction. One of the challenges in these applications is
how to choose the NBV. Authors in [7] employ a weighted
multi-objective optimization approach to select NBVs for a
mobile robotic arm, while [8] uses a double branch network
architecture to rank NBVs. Although many applications
involve a single robot, [9] leverages two robotic arms and
multi-agent systems, respectively, to select NBVs that pro-
mote efficiency and achieve faster reconstruction. Although
these works demonstrate the effectiveness of NBV in object
reconstruction, they mainly focus on dense data collection,
encouraging robots to gather data close to the target without
considering repetitive data collection or the overall aesthetics
of the target.

Another challenge of applying the NBV problem is com-
puting the optimal viewpoint in partially known or unknown
environments, where unexpected objects can not only ob-
scure the target but also pose safety threats to vehicles.
Although some research focuses on navigating robots to op-
timal viewpoints in known environments [10], several works
address this challenge in conjunction with NBV. Authors in
[11] investigate a receding-horizon NBV, utilizing a random
tree method to guide the robot along a path in an unknown
environment. [12] proposes a guided NBV approach for
large-scale 3D reconstruction, which requires a rough global
scan prior to a detailed NBV inspection. [13] computes
NBV based on the map built during frontier exploration.
Other works related to the NBV focus on exploring unknown
environments [14]. In our work, the robot starts with the
target’s location as a priori information and dynamically
updates the NBV to efficiently adapt to changes in the
environment, ensuring effective guidance of the vehicle.

III. PROBLEM FORMULATION

For inspection tasks, it is usually the case that the target
information is known (i.e., the location of a house, pipeline,
or structure) while the surroundings can be uncertain. In this
work, we assume that the robot knows the target information,
T, including the location and dimensions. Obstacles in the
environment, denoted as O, can either be known or unknown
and are represented by an occupancy map M. To find the

best point for inspection, the vehicle should update the best
view position as obstacles are detected that compromise
inspection photo quality. We assume that the vehicle is
equipped with a range sensor (i.e., LiDAR, sonar, cameras)
which enables the robot to recognize obstacles and measure
its distance to the target within the vehicle’s field of view.
The goal is to maximize the inspection information while
reducing the number of pictures needed during operations.
To achieve this, we formally define the problems as follows:
Problem 1. Metrics of the Best View for Target Inspection:
Consider the location and dimensions of the target repre-
sented by the coordinate set T and a set of initially unknown
obstacles that are discovered at runtime and represented by
an occupancy map M. The goal is to find an evaluation
metric G(T,M,P) that scores the sampled viewpoints P
for the vehicle to visit at runtime.

Problem 2. Max-Info Path Planning: Given a partially-
known environment and metrics for picture evaluation, gen-
erate a path that minimizes the time to the inspecting
task while ensuring the robot’s safety. The path planner
should also accommodate changes in the environment, as
new obstacles may appear as the vehicle approaches the
best inspection point.

IV. METHODOLOGY

The proposed framework aims to provide a comprehensive
strategy to inspect a target with the fewest number of
viewpoints. In defining such an inspection viewpoint, the
target object should occupy a certain proportion of the frame
from the viewpoint’s perspective, minimizing distortion and
reducing any obstructions. If the target is not fully visible in
one frame, the robot must decide autonomously to focus on
one part of the target and subsequently move to capture the
remainder of the target. In this work, we propose an objective
function that mathematically defines what a quality inspec-
tion photo is and a method to capture quality images of the
entire target with as few pictures as possible. Referring again
to Fig. 1, we point out that the house is best viewed from
viewpoint D since it is minimally obscured and distorted,
while other views show little of the house or have a distorted
view of the target.

Fig. 2 shows an overview of our approach to guide the
autonomous mobile robot during the mission. As shown, the
vehicle is initialized at a starting point in a partially-known
environment with the target information known. The vehicle
updates its map using its equipped depth sensor. After the
update, candidate views are generated and evaluated via our
quality scoring metrics. We use particle swarm optimization
(PSO) to iteratively search for the best viewpoint in the
environment but any DFO method can be utilized. The best
viewpoint is then passed to the vehicle’s planner and con-
troller to drive it toward the location. As the vehicle moves,
the best viewpoint is reassessed with any new information,
given repeated map updates. Once the vehicle reaches the
best viewpoint, a photo is captured and the target interest
is updated based on the estimated target coverage from the
captured photo using Gaussian process interpolation. Our
approach is discussed in detail in the following sections,
starting with the photo quality metrics followed by candidate
view generation and evaluation.



Fig. 2. Diagram of the proposed approach.

A. Photo Evaluation Metric

First, we introduce the metric to determine the ideal
position to capture an image of a desired target. To aid the
reader’s comprehension, we begin with a visual illustration
of the metric using a two-dimensional example in Fig. 3.
Furthermore, we offer a similar three-dimensional example in
Fig. 4 that showcases the expansion of the two-dimensional
metrics to three dimensions. We consider a discretized target
T ∈ Rm×nd where nd is the dimension of the target and
defined by m coordinates. In the 2D example, we show a
UAV positioned slightly behind an obstacle, obscuring its
view of the full target. For the visible portion of the target
Tv ⊆ T and for τ ∈ Tv , g(τ,p) = 1 indicates that
the visible portion has not been inspected previously and
is visible from viewpoint p, while g(τ,p) = 0 indicates that
the region is obscured or has already been observed in the
past. In our approach, we seek to autonomously navigate and
find the optimal location or a few locations to fully inspect
the desired object. We define the optimal viewpoint p∗ as
follows:

p∗ = argmax
p

G(T,M,p) (1)

where G(T,M,p) = γd · γs ·
∑
τ∈T

g(τ,p). (2)

The function g(τ,p) signifies the level of interest that
remains for any portion of the target after viewing from
viewpoint p. As shown in Fig. 3, the visible portion of the
target is a function of the position p and the occupancy map
M. The variables γd and γs are discount factors associated
with utility functions Ud and Us to assess the quality of a
viewpoint given its respective camera parameters, position,
and environmental obstructions. These factors are essential
in determining the robot’s choice of optimal viewpoints, as
they influence the amount of distortion that can be accepted
in the inspection pictures and the amount of the target that
should occupy the image. The evaluation of these factors will
be discussed in more detail in the following sections.

Fig. 3. Pictorial depiction of the evaluation metric for a 2D space.

Fig. 4. Pictorial depiction of evaluation metric for a 3D space.

1) Perspective Distortion Discount Factor

Directly facing an inspected surface is often the ideal view
for inspection tasks to maximize the amount of information
in one photograph and create a consistent view of the tar-
get [15]. In fields such as product photography, architecture,
or real estate where precise measurements and representa-
tions are required, if the view is at an angle, structures can
appear distorted, which may compromise the resulting image
capture. We introduce a perspective distortion discount factor
that penalizes views that cause a distortion of the target.
The target distortion in our approach is formally defined as
follows:

γd =

nd−1∏
i=1

Ud

(
|ℓi2 − ℓi1|

ℓiT
,qd

)
(3)

where ℓi1 and ℓi2 represent the maximum distances from
the optical center associated with the intersection of the
camera frame and the target. The variable ℓiT is the length
of the target captured along dimension i. Ud represents the
user-defined utility function associated with the perspective
distortion, penalizing unbalanced target captures, and qd is
a vector of parameters for the user-defined function. For
example, in a 2D scenario if ℓ11 = ℓ12, the view of the
vehicle’s camera is perpendicular to the target, minimizing
perspective distortion and maximizing γd. If ℓ11 >> ℓ12
or ℓ11 << ℓ12, the vehicle is positioned far to the left or
right of the target, respectively, maximizing the perspective
distortion and resulting in a small γd. This factor is designed
to account for information loss that may occur in side views
due to the inherent limitations of perspective projection.
By incorporating this factor into the optimization process,
the proposed method can effectively balance the trade-off
between the ideal view and the available view, improving
the overall quality of inspection images.

2) Scale Discount Factor

The term scale in photography refers to the relative size
of the target versus all other objects in the frame. We define
a favorable picture as a picture in which the target is in
the foreground and the target occupies a percentage β of
the frame. Accurate sizing of a subject within the frame
is essential for an accurate representation of the target. If
the scaling is incorrect, the image quality will be poor and
there will be little useful information. An example of this
is in real estate applications, where a properly sized image
will give prospective buyers an idea of the layout of the
property and the design elements of the home. We use γs
to represent the scale discount factor that encourages an



inspection image with a percentage of the frame being the
target of interest. The penalty factor is determined using the
target’s estimated area within the frame. The variable β is
a user-defined parameter that specifies the desired optimal
percentage of the target that is within the frame of the picture.
By applying a discount to target coverage using the scale
discount factor, we ensure that the optimal image captured by
the robot contains an appropriate and desirable proportion of
the target object. We use the following equation to calculate
this factor:

γs =

nd−1∏
i=1

Us

(
(ϕimax − ϕimin)

Φi
, β,qs

)
(4)

where ϕimin and ϕimax are the minimum and maximum
angles of the intersection between the target plane and center
of the frame along dimension i and Φi is the field of view
of the camera along dimension i. We denote Us as the user-
defined utility function associated with the scale of the target
in the frame and qs as a vector of parameters for the user-
defined function. In (4) , if ϕimin = −Φ/2 and ϕimax =
Φ/2, the target would occupy 100% of the frame along
dimension i. As a result, the utility function Us(·) would
score this percentage based on the parameter β. In this case,
if β = 1, the value of γs would be maximized. To illustrate
this concept, Fig. 3 presents a physical representation of
the ϕs and the corresponding scale of the target within the
vehicle’s frame.

B. Candidate View Evaluation

The criteria for an optimal inspection picture from the
previous sections can be used to assess the quality of any
viewpoint given the vehicle’s current knowledge of the
environment. As assumed in Sec. III, the vehicle is equipped
with a depth sensor (e.g. lidar, stereo camera, RGB-D) and is
capable of updating the occupancy map of the environment
M. In this application, the occupancy map is updated using
recursive Bayesian updates [16], although any method can
be used. The occupancy map ensures that as the robot
moves through the environment, obstacles and obstructions
are stored and planned for in subsequent iterations usingM.
In turn, this requires that a view be reevaluated, since the
quality of a view may increase or decrease as new occupied
areas are observed. Thus, the quality of a viewpoint must
be assessed at runtime; however, determining the vehicle’s
view of the target in a cluttered, partially-known environment
is complex and potentially creates a discontinuous or highly
non-linear solution space for (1). To reduce the complexity of
the computation, we use ray-casting to determine the quality
of a viewpoint.

Ray-casting is a classical technique in computer vision that
allows complex interactions and quality estimations to be
discretely modeled [17]. Similar to [18], we use ray-casting
and (2) to estimate the quality of a vehicle’s view. In our
approach, we use a geometric ray-sphere transformation to
estimate interactions with obstacles and the target efficiently.
The set of coordinates that terminate at the robot’s maximum
observation range dmax are derived from a set of unit vectors
U that emanate from a viewpoint and are defined as follows:

Xs = {p+ dmaxû | û ∈ U}. (5)

Fig. 5. Pictoral depiction of a ray-sphere intersection with coordinate z.
The intersection point hmin is used to update the coordinate xs.

We also define the radius cr to check each ray for an
intersection with the discretized target space T or an obstacle
coordinate. As illustrated in Fig. 5, each coordinate of
interest z (e.g., target or obstacle coordinate) is checked
for intersection with each ray defined by the viewpoint and
the set U. We use a geometric approach to project the line
segment between the viewpoint p and the coordinate of in-
terest along the vector û corresponding to the coordinate xs.
Algorithm 1 gives an overview of the ray-tracing procedure
for an example coordinate z.

Algorithm 1 Ray-casting algorithm
Require: xs; û; T

1: ys = 0
2: dterminal = ||xs − p||2
3: dz = (z − p) · û
4: if dz > 0 then
5: hclosest = p+ dzû ▷ Closest point along ray to z
6: dcenter = ||hclosest − z||2
7: if dcenter < cr then
8: dchord =

√
c2r − d2center

9: H = hclosest ± dchord
10: hmin = argmin

hs∈H
||hs − p||2

11: dintersect = ||hmin − p||2
12: if dintersect < dterminal then
13: dterminal = dintersect
14: xs ← hmin

15: if z ∈ T then
16: ys ← 1

17: return xs, ys

Given that we can use this algorithm to find intersec-
tions with target coordinates and obstacles, we update each
xs ∈ Xs using Algorithm 1 and store whether each xs is
associated with the target, logically denoted by ys ∈ Ys.

Subsequently, we can determine the values of the variables
in (3) and (4) that intersect the target. ϕimin and ϕimax are
the minimum and maximum angles between the normal vec-
tor of the frame and the vectors that intersect the target along
the ith dimension. In the same way, ℓi1 and ℓi2 are determined
by the distance to the point of intersection between the target
and the rays along the ith dimension. Using this methodology,
we can similarly compute the score in (2), but in a discretized
manner, increasing the computation speed for each candidate
view in the environment.

C. Target Coverage Estimation using GP Interpolation

The exact coverage for any target in 2D or 3D space is a
binary indicator for all coordinates of whether a coordinate of
the target has been captured or not. However, this process can
be expensive for a vehicle with limited computing capability
for any sized target, especially considering that we would



need an infinite number of rays to exactly compute the
coverage. For this reason, we use sparse ray-casting and
Gaussian process interpolation, utilizing induction points
based on the target location.

Gaussian process interpolation is a probabilistic frame-
work for interpolation and provides a natural way to quantify
uncertainty for a static set of target points [19], [20]. Given
a finite and sparse number of sampling points from the
ray intersections, we use Gaussian process interpolation to
estimate the probability of a target coordinate x ∈ X being
observed at non-sampled target points.

Consider an initial GP, as presented in [21]

f(X) ∼ GP(µ(X), k(X,X′)) (6)

characterized by a mean and covariance function:

µ(X) = E[f(X)] (7)
k(X,X′) = E[(f(X)− µ(X))(f(X′)− µ(X′))] (8)

where f(X) is functionally interpreted in this application
as whether a target coordinate x ∈ X has been captured
by the inspecting vehicle (i.e., a zero if the coordinate has
not been observed and a one if the coordinate has been
inspected before). For interpolation of the target space, the
widely used radial basis function (RBF) kernel is employed
to capture the spatial relationship between two points and
likewise interpolate their value using the Gaussian process
regression with the kernel equation formulated as:

k(X,X′) = σ2
f exp

(
−||X−X′||2

2σ2
l

)
. (9)

where σl ∈ [0, 1] and σf ∈ [0, 1] are two hyperparameters. In
this work, we tuned the hyperparameters by minimizing the
negative log-likelihood of the training data. In this applica-
tion, the hyperparameters were tuned using PSO because of
its flexibility, given that it could be adapted to a higher speed
or higher accuracy depending on the convergence criteria
[22]. Additionally, the variable X ∈ Rm×nd is a set of m
sampled target coordinates from the ray-casting discussed in
the previous section. We can estimate the target coverage as
the difference between the prior target coverage µ(X) and the
estimated target coverage using the posterior mean, µ∗(X),
from a new viewpoint p given the set of sample target points
Xs ∈ Rs×nd . As such, the computational complexity of the
target coverage is significantly reduced by the new equation

G(X,p) = γd · γs ·
m∑
j=1

(µ∗
j (X)− µj(X)). (10)

where the subscript on µ denotes the element of the mean
value for coordinate j and we compute µ∗ as

µ∗(X) = k(X,Xs)
[
k(Xs,Xs) + σ2

nI
]−1

Ys. (11)

The variable σn is a constant in this case representing sensor
noise and Ys is the binary 1D matrix signifying if the
sample terminal ray-cast coordinates in Xs were in range
of a target coordinate. With this belief update, we estimate
the probability of additional coverage of the target from
a candidate viewpoint p and (2) can be efficiently com-
puted for each candidate viewpoint p. However, computing

every candidate view in the environment is intractable at
runtime, especially given that (2) may have a non-linear or
discontinuous solution space. To overcome this limitation,
we incorporate particle swarm optimization to dynamically
determine the optimal viewpoint in real-time.

D. Candidate View Particle Swarm Optimization

As previously stated in Sec. IV-C, PSO is useful for solv-
ing a highly non-linear problem and is adaptable to runtime
considerations. In our inspection application, a candidate
viewpoint is represented as a point in a N -dimensional
solution space. A swarm of particles is used to represent
potential viewpoints. Each particle, pi(t), is the coordinate of
the ith candidate view at time t, and its velocity components
are represented as vi(t). The coverage G is calculated for
each viewpoint and the particles migrate toward the particle
with the highest evaluation score.

At each time t, the velocity of a particle is perturbed by
the weighted sum of its personal best view and global best
view, resulting in an updated velocity and position. To update
the particle, we use the following equations:

vi(t+ 1) = wvi(t) + r1c1(bi(t)− pi(t)) (12)
+ r2c2(g(t)− pi(t))

pi(t+ 1) = pi(t) + vi(t+ 1) (13)

where bi(t) and g(t) are the global best position evaluated
by the particles and the global best position of all particles,
respectively. The acceleration coefficients c1 and c2 are non-
negative constants, which weigh the influence of the personal
and global bests in the search process. The inertia weight
w balances the local and global exploration of the particles
in the search space [23]. To avoid divergence, the value of
w must be between 0 and less than 1. The coefficients c1
and c2 can be adjusted to influence the particles to explore
the area around their local optima (when c1 > c2) or the
area around the global optima (when c2 > c1). This can be
changed during the heuristic process to promote exploration
or exploitation. Variables r1 and r2 are random numbers
between 0 and 1 and are used to perturb the particles to
encourage exploration.

Fig. 7 shows the result of our approach in 3D in which
the vehicle detects an obstacle that blocks the target and
propagates particles given the updated occupancy map. The
vehicle moves toward the best view, as defined by the best
global position of all particles. As the vehicle moves, the
particles iteratively migrate in search of the best viewpoint.
Once the vehicle reaches the best viewpoint location, it will
capture a photo and update the observed portions of the target
as shown in Fig. 7(b). This allows the vehicle to move to
unobserved portions of the target in future iterations. In this
instance, the best view of the target was shifted due to the
obstacle. Since the raycasting is uniform from the vehicles’
position, the right side of the target was estimated as unseen
rather than fully reflecting the ground truth outcome. We
suggest that this is a beneficial outcome, as the vehicle was
able to travel to the estimated “unseen” part of the target to
obtain an undistorted image of the other side rather than the
small left-hand portion.



Fig. 6. An example using GP interpolation to estimate the visibility of a
target in a two-dimensional space. The color bar to the right of (a) displays
the ground truth target coverage, while (b) illustrates the estimation of the
coverage using GP interpolation.

(a) (b) (c)
Fig. 7. An example of using GP to estimate the visibility of the target in
3-dimensional space. (a) presents the settings, (b) shows the estimated GP
result from the ray hits. (c) provides the ground truth for visibility.

E. Comparison Discussion

We note that this is a novel approach for photographing
and inspecting targets, minimizing the number of photos to
capture and evaluating the quality of the images. Therefore,
other methods can incorporate these scoring metrics as part
of their planning approach. We demonstrate an example
of such modification, where we compare a sampling-based
frontier approach from [24] applied to a target space in
Fig. 8. Fig. 8(a) shows that the typical sampling-based fron-
tier approach will value efficient exploration and consider
target areas explored. The frontier approach captures a new
image each time a previously unseen portion of the target is
uncovered. It takes a total of 25 photos, each of which fails to
match the quality metrics defined in our work. In contrast, the
proposed approach shown in Fig. 8(b) only takes 2 inspection
photos that maximize the designed evaluation metrics.

(a) (b) (c)
Fig. 8. Comparison of sampling-based frontier approach (a) with the
proposed NBV-based approach (b).

V. SIMULATIONS

To demonstrate the robustness of the proposed method,
we conducted extensive simulations using different vehicles
equipped with sensors of varying capabilities in diverse envi-
ronmental contexts. In these simulations, the vehicle operates
in a partially-known environment defined by operational
boundaries, target position, and dimensions. As stated in
Sec. III, we assume that the vehicle is equipped with two
primary sensor types: 1) a depth sensor for obstacle detection
(e.g., RGB-D camera, Lidar, etc.), and 2) an optical camera
used for photography. We ran all tests in MATLAB on a
Lenovo ThinkPad P14s laptop with a 2.80 GHz Intel 4-Core
i7 processor and 32 GB RAM.

In the 2D simulation, the vehicle operates in a
100m×100m grid world with a resolution of 1m and uses
a hybrid A* for path planning, benefiting from its ability
to rapidly compute optimal paths in 2D environments while
accounting for vehicle dynamics. The objective is to inspect
the four sides of a building measuring 30m×15m. Various
shapes of unknown obstacles are placed in front of three
sides of the building. Both the depth sensor and the camera
have a field of view (FOV) of Φ = [−π

4 ,
π
4 ]. The range of the

RGB-D sensor is rmax = 25m. We set β = 0.8 and the utility
functions are designed in the style of logistic functions:

U(x,q) = q1 +
q2

1 + eq3(x+q4)
, q = [q1, ..., q4] (14)

We choose logistic functions because their inherent prop-
erty of rapid decline in value allows for the effective differen-
tiation between preferred values and those less desirable. For
the utility function Ud, a more substantial penalty should be
applied as x approaches 1, indicating increased perspective
distortion. Therefore, we select qd = [0.3, 0.7, 20,−0.75].
Regarding Us, we construct a piece-wise function with qs =
[0, 1,−20,−0.5] for x ∈ [0, β] and qs = [0, 1, 30,−1]
for x ∈ (β, 1] to ensure the utility’s peak aligns with the
desired proportion β. Ud diminishes as x diverges from β,
encouraging β proportion of the target within the frame
while preventing the view from intersecting with the frame
edges [1]. Users can also alter these functions or design
functions in similar styles to fit their applications. The utility
functions are not dependent on the target or environment and
were used in all simulations and experiments.

We use PSO to search for the optimal viewpoint by
uniformly distributing 20 particles across the environment
and iteratively refining the search. Fig. 9 shows the top-
down view of some keyframes during the simulation. The
heatmap on the second row is generated by computing
the expected target coverage and image quality for every
viewpoint in the environment using (2). As illustrated in
Fig. 9, the vehicle takes pictures from the best viewpoint
found by the PSO on each side of the building and takes
several pictures from different points of view for the same
target when necessary. The L2 norm of the error between
the global optimal and the results obtained through PSO is
0.8538± 0.6816m. Considering the dimension of the target,
this error is neglectable. It’s noteworthy that this error could
be mitigated by either adding more particles or increasing
the number of optimization iterations. GP estimates of the
inspected portions are shown as colored bars on the target.
The evaluation performance for this 2D example occurs at a
rate of 1.79ms per candidate viewpoint.

A 3D simulation result is shown in Fig. 10 in which a
10m×1m×10m target is positioned in a 30m×30m×40m
space with an obstacle placed in front of it. In this case,
we employ RRT∗ for its speed and efficiency in computing
a path in a complex 3D environment. The RGB-D sensor
has identical horizontal and vertical FOV. As indicated in
Fig. 10, the aerial vehicle routes to the optimal viewpoint
from where it can see the majority of the target and avoids the
view from being occluded by the obstacle. The corresponding
heatmaps orthogonal at the viewpoint are provided to show
the optimality of the viewpoint. The evaluation for the 3D
example occurs at a rate of 5.48ms per candidate viewpoint.



Fig. 9. A top-down perspective of a 2D simulation featuring a quadrotor assigned to inspect four sides of a building. The frames are chronologically
arranged from left to right. The first row captures 1) the quadrotor states, 2) exploration progress, and 3) the inspected portion of the target. The heatmaps
in the second row show the ground truth information gain at all viewpoints in the environment.

Fig. 10. Heatmap showing the results of the equations in the x-y, x-z,
and y-z planes, sliced at the optimal locations (denoted by a black star). As
shown, the vehicle is at the optimal point and can see the whole target.

VI. EXPERIMENTS

To validate the effectiveness and versatility of our pro-
posed approach, extensive real and virtual experiments were
conducted with various autonomous vehicles. We performed
2D experiments on different robots in similar environmental
settings with and without the presence of obstacles. The
experiments were carried out indoors using a VICON motion
capture system to localize the robots. The robots used for
these experiments are: a ROSbot skid steering UGV equipped
with an RPLIDAR and a camera, and a DJI Tello UAV
operating in the x-y plane while maintaining a fixed altitude.
As in the simulation, we set β at 0.8.

First, to test the effectiveness of our approach, the Tello
was started from the corner of the room and tasked to inspect
an object in a free space. From the left to the right in Fig. 11,
we demonstrate: 1) the bird view of Tello taking a picture,
2) the GP result shows the entire target is inspected, 3)
the heatmap shows the ground truth information gain each
viewpoint in the environment (with the UAV at the optimal
position), and 4) the target lays in the center and takes up
the desired 80% of the horizontal FOV in the final picture.

Fig. 12 shows the result for a case with obstacles blocking
the direct view of the facade of a target object. Thanks to
our approach, the UAV realizes that it needs to take two
pictures from each side of the T-shape obstacle to cover the
entire front surface of the object and it only needs to take
one perspective shot to look over the obstacle and inspect
the entire side surface.

Fig. 13 shows results for a setting with a slash-shaped
obstacle. This time the ROSbot UGV locates the best vantage
point at which the obstacle appears as a thin line.

To further reinforce these results, we performed virtual
experiments using a simulated RotorS Firefly equipped with
a stereo camera. This experiment ran on the same hardware

Fig. 11. Without obstacles, the proposed approach enables the UAV to
capture the entire target from the optimal inspecting point.

Fig. 12. A 2D experiment is shown that is similar to the 2D simulation.
The heatmap shows that the quadrotor captures images from the most
advantageous perspectives. The photographs obtained are also displayed.

Fig. 13. An experiment inspecting an object with a slash-shape obstacle.
The ground vehicle preserves almost the entire target with minimal distor-
tion. The obstacle appears as a thin line.

in Sec. V in C++. The evaluation of each candidate viewpoint
occurs in 2.39ms. Fig. 14 shows the results of an example
virtual experiment. As shown in Fig. 14, the vehicle detects
the tree in front of the house using the stereo camera and
stores the readings in an OctoMap [25]. The vehicle uses
particle swarm optimization to maximize the equation in
(2) where the result is a viewpoint that maximizes the
information gain while minimizing distortion. The picture in
Fig. 14(b) shows the resulting image from this viewpoint. For
this experiment, we set β to 0.8 and use RRT∗ to route the



(a) (b)

(c) (d)

Fig. 14. An example virtual experiment where a tree obstructs the view
of the target. (a) and (b) show the initial and final view. (c) and (d) show
the trajectory followed to the best viewpoint in gazebo and rviz.

vehicle around obstacles. The Gazebo snapshot in Fig. 14(c)
shows the planned trajectory of the UAV. The Rviz snapshot
in Fig. 14(d) shows the resulting plan given the observed
obstacles, where the red-shaded region represents the target.

VII. DISCUSSION AND CONCLUSION

In this work, we have presented a novel framework for an
autonomous vehicle to take a quality image of a target in a
partially-known environment. The approach includes utility
functions to define the quality of a viewpoint as well as
a method to estimate the information gain of a viewpoint
at runtime. The extensive simulations and results of the
experiments show the validity, applicability, and generality
of the proposed method.

Moving forward we are interested in investigating the
following directions: 1) incorporate our metrics into existing
NBV planners to optimally route to viewpoints; 2) extend the
framework to consider dynamic obstacles; 3) identify areas
of interest to inspect after the entire target has been viewed
such as structural inconsistencies and areas of concern; 4)
implement this approach with only a monocular camera,
utilizing machine learning to recognize depth information of
a target; 5) conduct modeling and testing of this framework
with multiple robots.
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