Exploiting Ground and Ceiling Effects on Autonomous UAV Motion Planning

Shijie Gao¹, Carmelo Di Franco¹, Darius Carter², Daniel Quinn², Nicola Bezzo¹

¹Electrical & Computer Engineering ²Mechanical & Aerospace Engineering

WVA ENGINEERING LINK LAB

International Conference on Unmanned Aircraft Systems 2019

Introduction

Challenges in UAVs Applications

- Micro aerial vehicles have limitations, like limited battery life, payloads and size constraints
- Sensors on UAV are **bulky**, **energy consuming**, and **not always reliable**

Motivation

Surface effects (ground/ceiling effect) provide extra lift when UAV flying close to the surface

- We can leverage this effect to sense the distance from the ground
- Moreover, the extra lift can be used to **save energy**

Problem Formulation

PROBLEM 1: Surface Detection

Find a function f which maps the thrust values to the distance from the surface

$$d = f(F)$$

PROBLEM 2: Surface-based Optimal Path Planning:

Minimize the energy consumption during waypoint navigation in a known environment by leveraging the extra lift provided by nearby surfaces

Surface detection and autonomous landing

Visualization of air flow fields

Experiment versus theory

Experiment setup

Ceiling, Height 1.95 m Asctec Hummingbird **VICON MoCap** Ground

Throttle – Distance Model

 Four models (hover at ground/ceiling, ascending/descending) are found by fitting the collected data with power models

$$T_t = a \cdot d_t^{b} + c$$

Descending to ground
$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$$

Surface Detection & Autonomous Landing

Model based distance estimation

 A three-stage state machine is proposed for safe sensorless autonomous surface detection and landing

Experimental Results – Surface Detection & Landing

Landing on the box

Experimental Results – Surface Detection & Landing

Autonomous landing with moving surface

Thrust-based Path Planning

Thrust-based Path Planning

Build directed graph

- A directed graph is constructed considering:
 - Intermediate waypoints (e.g. {A, B, C, D} in the example)
 - Surfaces along the path

Thrust-based Energy Analysis

Energy Model based on thrust surface correlation

- For each propeller i the thrust F_i and the torque τ_i is: $F_i = k_f \omega_i^2$, $\tau_i = k_m \omega_i^2$, i = 1, ..., 4 (1)
- The total power consumed is:

$$P = \sum_{i}^{4} \tau_{i} \omega_{i} = \left[\frac{k_{m}}{k_{f}^{\frac{3}{2}}} \sum_{i}^{4} \left(\frac{F_{i}}{F}\right)^{\frac{3}{2}}\right] F^{\frac{3}{2}} \qquad (2)$$

• If approximate $F_{i} = \frac{1}{4}F$, the total power P is:
 $P \propto T^{\frac{3}{2}} \qquad (3)$

where throttle *T* is the percentage of the maximum thrust

Thrust-based Path Planning

Experiment Validation

- Experiments are conducted to validate equation $P \propto T^{\frac{1}{2}}$.
 - Ascending or descending from 0 to 90

- The throttle given to the quadrotor is overall **constant** during the same type of trajectory maneuver (**ascending**, **descending**, **horizontal transition**)
- The energy cost for every edge in the directed graph is calculated by:

$$E_{i,j} = \widehat{\boldsymbol{T}}^{\frac{3}{2}} \frac{d_{i,j}}{|\bar{v}_{i,j}|}$$

Simulation Results – Path Planning

- The minimized energy path is planned by running Dijkstra on the constructed graph
- The total throttle T is proportional to the total energy:

$$\widehat{E}_{Traj} = \sum E_{i,j}$$

Path	Predicted Total Energy	Measured Total Energy	
		Mean	Std
Optimal Path	10.7906	11.2050	0.0111
Basic Path	13.0843	13.3168	0.0221
Shortest Path	11.2445	11.5944	0.0289
Optimal Path(No Surfaces)	11.2622	11.6627	0.0587

Experimental Results – Path Planning

Shortest ≠ Minimum energy

Conclusions

• Conclusions:

Based on the surface effects:

- Thrust based surface detection for sensorless autonomous landing
- Graph based framework for energy efficient path plan algorithm
- Future Challenges:
 - Surface effects under disturbances
 - Characterization of flow dynamics effects in tight formations of UAV swarms
 - Aggressive maneuvers of vehicles near vertical surfaces for wall detection

Thank you!

We thank Esen Yel for assisting us on the experiments.

WVA ENGINEERING LINK LAB

