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Introduction

Motivations:

* Planning and control methods developed in
Simulations can behave differently on real systems.

* The algorithm designed specifically for one platform
is hard to be transferred to other systems.

 The same system needs to be adjusted over time or
under different environments.

Goals:
* Reduce the sim-to-real gap to boost the deployment of motion planning and control methods.
* Transfer knowledge designed for a specific robot onto a different robot.

e Quickly learn the limits and proper input mapping to compensate for system deterioration.



Problem Definition

1. Teacher-Learner Control Transfer:
Given a teacher robot with dynamics xp(t + 1) = fy(xp(t), ur(t)) and control law.
Given a learner robot without knowing its dynamics f;.
Find a policy g to map the input from teacher to the learner, such that,
u,(t) = g(ur(t))
Fr(ar(©, ur(®) = fL(x,(0), u, ()

2. Teacher-Learner Motion Planning Adaptation

Assume that the learner has less capability than the teacher

Design a teacher’s planning policy % such that the computed trajectory adapts to
the limitation of the learner



Methodology

* Schwarz-Christoffel mapping (SCM) based command mapping from the teacher’s command
domain to the learners.

* Motion Primitive based path planning limits the trajectory within the learner’s capability.
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Methodology: Schwarz-Christoffel Mapping

Command Pair
* A pair of commands which makes the two vehicles produce the same motion.

Area of Interest
* Given a desired teacher command, the neighboring commands pairs construct areas of

interest for mapping on both sides.
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Methodology: Schwarz-Christoffel Mapping

Mapping from the teacher command domain to the learner’s

* On each side, SCM maps the area of interest to a rectangle of a unique aspect ratio.
* A unit square is used to bridge the two rectangles.

Mapping from a polygon to a rectangle

Consider the polygon as a generalized
qguadrilateral.
Pick 4 vertices as the vertices for the
qguadrilateral.
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Methodology: Schwarz-Christoffel Mapping

1. Mapping from polygon to bi-infinite strip
* Order the polygon vertices w; and the pre-vertices z; in ccw.

* From strip to the generalized quadrilateral. . TZN_l ZN-2
. N
w=f5E) =4 [ []#

* The angles a;m are preserved by

e3(04—0-)z j=0, . CI:
fi(z)=q {—i-sinh[5(z — 2;))]}* 1<j<M,
{—i-sinh[-5(z—2;)|]} M+1<j<N q >
1

* Fixing z; = 0 to remove constant C.
* The location of the rest of the pre-vertices z;

N
Wg+1 — Wk _.E:H 11— fi(2)dz

) , o . N ’
w2 — w1 f,: Hj:ﬂ fi(z)dz

k=2.3,...,N —2



Methodology: Schwarz-Christoffel Mapping

2. Mapping from rectangle to bi-infinite strip -
* Leveraging the Jacobi elliptic of the first kind
1
S .
2 = f3(a) = — - In(sin(q|m))
* The shape of the rectangle is linked to L T q;
>

q1

The mapping function from polygon to the rectangle

¢ = fsom(w) =15 (f5 (w))
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Methodology: Primitive Path Planning
Learn the learner’s limitations:

* The learner’s limitation is characterized on the teacher command space by the convex hull
built by the command pairs.
* The convex hull does not need to cover the whole command space of the learner
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Methodology: Primitive Path Planning

Motion primitives
* Ateacher motion primitive is built by feeding the teacher a sequence of the same command.
* The primitive whose associated command is in the convex hull is used for motion planning.
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Methodology: Primitive Path Planning

Path planning
 The teacher compares the available motion primitives with the corresponding segment of

the desired path to find the optimal local motion plan.
Evaluate metriCS: Teacher Command Domain Bt

- dynamic time warping (DTW) distance e . ..........................
- heading difference /' o .f P i [ o= 6= 6]
/| e © - L
0; = kg-eq+ kg ep ‘z.z .: b S
— kg - DTW (P, p;) + ko - |(0p — 6,,,) e
pf = min 0;. \p
P1;---Pi An example of picking the optimal local motion

 The associated teacher command of the selected motion primitive will be the desired
command and mapped to the learner.



Methodology: Primitive Path Planning

Event triggered replanning for safety monitor

* The amount of deviation d; is monitored at runtime

— |n open area :
The deviation is allowed to be large.

— In cluttered environment :
Even a small deviation should trigger the replanning for safety.

(pxmin(|lp—o;|) i=1,2,...,N,
o0 1= J,
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Simulation Results 1: Original System to Degraded System
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Simulation Results 1: Original System to Degraded System

e With the proposed approach
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Simulation Results 2: Original System to Degraded System

* Without the proposed approach
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Experiment Results 1: Simulated UGV to Jackal UGV




Experiment Results 2: Simulated UGV to Jackal UGV

* Without the proposed approach
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Experiment Results 3: Simulated UGV to Turtlebot2 UGV




Conclusions and Future Work

Summary:
* A novel light-weight transfer learning framework based on conformal mapping.
* Directly maps the control input while the learner’s dynamics remain unknown.

* A motion planning policy that adapts to the learner’s dynamics.

Current and Future Work:

e Transfer from a higher-order system to a lower-order system.

* Extend our framework to deal with learners with more capabilities than the teacher
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