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Introduction

Motivations:

« Autonomous robotic systems are subject to
many challenges in real world applications such
as:

« Component failures
e System aging
 Model changes

 These situations cause the system to operate
under degraded conditions and potentially
become unsafe

« The onboard controller or control inputs may
not be always accessible
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Introduction

Objectives:
 To predict the future states and state
uncertainties of a system With an [T original desied rajectory o e
Faulty behavior

unforeseen fault at runtime | Roplanned desired vajectory [

State predictions

 To monitor if the system will violate
safety constraints

 To replan the desired trajectories to
Improve safety

 To continuously monitor and update
the  prediction models  using
runtime data
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Approach Overview

 Meta-learning-based framework for future state and state uncertainty prediction
« Offline stage: Meta-training using data from various actuator faults

« Online stage: Predictions and safety monitoring for the new faulty system and
replanning to preserve safety
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Approach: Offline Meta-Training

During the offline stage, state and uncertainty data from a discrete fault set are collected.

The element-wise mean and variance is -
computed for each fault: (
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A meta-network is trained to predict the future |\ )
states and state uncertainties:
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Approach: Online Update

During the online stage, a meta-learned model is fine-tuned with the online data collected with
a new fault:
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« Runtime validation: We constantly I
monitor the model and re-update it if: | Runtime dataset -

e The observed states leave the y
predicted region

* The distance between the runtime
Input and training set becomes larger
than a given threshold
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Approach: Online Predictions and Replanning

The network is used to predict future states and state uncertainties at runtime:
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Results: Simulations

The UAV collides with the object without the meta-learning prediction and replanning approach
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Results: Simulations

The UAV detects the possible collision and replanned for safety

[_IPrediction based on replanned trajectory Il Obstacle
[JPrediction based on unsafe replan 1 QUALV state at replanning
Prediction based on unsafe replan 2

—UAV path = =Unsafe replan trajectory1

—Desired trajectory Unsafe replan trajectory?2

——Updated reference trajectory = =Safe replan trajectory
Original deTc,ired trajectory
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Results: Experiments

The UAV would collide with the obstacle without proactive replanning.
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y(m)

Results: Experiments

The UAV predicts the possible collision and replanned the path for safety

b = -0.13rad, speed = 0.3 m/s
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Results: Experiments

When there is no possible collision, replanning is not triggered.

b = -0.13rad, speed = 0.3 m/s
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Results: Experiments

The approach is validated with a more cluttered environment to demonstrates the robustness.
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Conclusions and Future Work

Summary:
 Meta-learning for future state and state uncertainty prediction under unknown faults
* Proactive replanning to avoid collisions

 Runtime model monitoring

Current and Future Work:
« EXxtension to dynamic environments
« Extension to time-varying faults

* |ncorporating various planning techniques to provide guarantees about finding a safe
trajectory solution
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