
Meta-Learning-Based Proactive Online 
Planning for UAVs Under Degraded 
Conditions
Esen Yel1*, Shijie Gao2*, Nicola Bezzo2

*Equal Contribution

1Now at Stanford University, 1University of Virginia

IEEE/RSJ International Conference on Intelligent Robots and Systems

IEEE Robotics and Automation Letters (RA-L)
1

AMR LAB



- 25389 data 
- 3 hidden layer with 64 nodes
- Sigmoid activation function
DNN Performance

FP=5%; FN=5%

Introduction
Motivations:
• Autonomous robotic systems are subject to

many challenges in real world applications such
as:

• Component failures

• System aging

• Model changes

• These situations cause the system to operate
under degraded conditions and potentially
become unsafe

• The onboard controller or control inputs may
not be always accessible
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Introduction
Objectives:
• To predict the future states and state
uncertainties of a system with an
unforeseen fault at runtime

• To monitor if the system will violate
safety constraints

• To replan the desired trajectories to
improve safety

• To continuously monitor and update
the prediction models using
runtime data
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Approach Overview
• Meta-learning-based framework for future state and state uncertainty prediction

• Offline stage:Meta-training using data from various actuator faults

• Online stage: Predictions and safety monitoring for the new faulty system and
replanning to preserve safety
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Approach: Offline Meta-Training
• During the offline stage, state and uncertainty data from a discrete fault set are collected.

• The element-wise mean and variance is 
computed for each fault:

• A meta-network is trained to predict the future 
states and state uncertainties:

History of states

History of desired states

Future desired states

Future states

Future state uncertainties
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Approach: Online Update
• During the online stage, a meta-learned model is fine-tuned with the online data collected with 

a new fault:

• Runtime validation: We constantly 
monitor the model and re-update it if:

• The observed states leave the 
predicted region

• The distance between the runtime 
input and training set becomes larger 
than a given threshold
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Approach: Online Predictions and Replanning
• The network is used to predict future states and state uncertainties at runtime:

• If the predicted region collides with 
obstacles, the trajectory is replanned by 
sampling and testing waypoints:
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Results: Simulations
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The UAV collides with the object without the meta-learning prediction and replanning approach
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Results: Simulations
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The UAV detects the possible collision and replanned for safety
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Results: Experiments
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The UAV would collide with the obstacle without proactive replanning.



11

- 25389 data 
- 3 hidden layer with 64 nodes
- Sigmoid activation function
DNN Performance

FP=5%; FN=5%

Results: Experiments
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The UAV predicts the possible collision and replanned the path for safety
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Results: Experiments
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When there is no possible collision, replanning is not triggered.
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Results: Experiments
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The approach is validated with a more cluttered environment to demonstrates the robustness.
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Conclusions and Future Work
Summary:

• Meta-learning for future state and state uncertainty prediction under unknown faults

• Proactive replanning to avoid collisions

• Runtime model monitoring

Current and Future Work:

• Extension to dynamic environments

• Extension to time-varying faults

• Incorporating various planning techniques to provide guarantees about finding a safe 
trajectory solution
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Thank you!
Esen Yel:          esenyel@virginia.edu

Shijie Gao:        sjgao@virginia.edu
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